spaCy/examples/pipeline/wiki_entity_linking/train_el.py
2019-05-21 23:42:46 +02:00

345 lines
15 KiB
Python

# coding: utf-8
from __future__ import unicode_literals
import os
import datetime
from os import listdir
import numpy as np
import random
from thinc.neural._classes.convolution import ExtractWindow
from examples.pipeline.wiki_entity_linking import run_el, training_set_creator, kb_creator
from spacy._ml import SpacyVectors, create_default_optimizer, zero_init, logistic
from thinc.api import chain, concatenate, flatten_add_lengths, clone, with_flatten
from thinc.v2v import Model, Maxout, Affine, ReLu
from thinc.t2v import Pooling, mean_pool, sum_pool
from thinc.t2t import ParametricAttention
from thinc.misc import Residual
from thinc.misc import LayerNorm as LN
from spacy.tokens import Doc
""" TODO: this code needs to be implemented in pipes.pyx"""
class EL_Model:
PRINT_LOSS = False
PRINT_F = True
PRINT_TRAIN = False
EPS = 0.0000000005
CUTOFF = 0.5
INPUT_DIM = 300
HIDDEN_1_WIDTH = 256 # 10
HIDDEN_2_WIDTH = 32 # 6
ENTITY_WIDTH = 64 # 4
ARTICLE_WIDTH = 128 # 8
DROP = 0.1
name = "entity_linker"
def __init__(self, kb, nlp):
run_el._prepare_pipeline(nlp, kb)
self.nlp = nlp
self.kb = kb
self._build_cnn(in_width=self.INPUT_DIM,
entity_width=self.ENTITY_WIDTH,
article_width=self.ARTICLE_WIDTH,
hidden_1_width=self.HIDDEN_1_WIDTH,
hidden_2_width=self.HIDDEN_2_WIDTH)
def train_model(self, training_dir, entity_descr_output, trainlimit=None, devlimit=None, to_print=True):
# raise errors instead of runtime warnings in case of int/float overflow
np.seterr(all='raise')
train_inst, train_pos, train_neg, train_texts = self._get_training_data(training_dir,
entity_descr_output,
False,
trainlimit,
balance=True,
to_print=False)
dev_inst, dev_pos, dev_neg, dev_texts = self._get_training_data(training_dir,
entity_descr_output,
True,
devlimit,
balance=False,
to_print=False)
self._begin_training()
print()
self._test_dev(dev_inst, dev_pos, dev_neg, dev_texts, print_string="dev_random", calc_random=True)
self._test_dev(dev_inst, dev_pos, dev_neg, dev_texts, print_string="dev_pre", avg=False)
instance_pos_count = 0
instance_neg_count = 0
if to_print:
print()
print("Training on", len(train_inst.values()), "articles")
print("Dev test on", len(dev_inst.values()), "articles")
print()
print(" CUTOFF", self.CUTOFF)
print(" INPUT_DIM", self.INPUT_DIM)
print(" HIDDEN_1_WIDTH", self.HIDDEN_1_WIDTH)
print(" ENTITY_WIDTH", self.ENTITY_WIDTH)
print(" ARTICLE_WIDTH", self.ARTICLE_WIDTH)
print(" HIDDEN_2_WIDTH", self.HIDDEN_2_WIDTH)
print(" DROP", self.DROP)
print()
# TODO: proper batches. Currently 1 article at the time
# TODO shuffle data (currently positive is always followed by several negatives)
article_count = 0
for article_id, inst_cluster_set in train_inst.items():
try:
# if to_print:
# print()
# print(article_count, "Training on article", article_id)
article_count += 1
article_text = train_texts[article_id]
entities = list()
golds = list()
for inst_cluster in inst_cluster_set:
entities.append(train_pos.get(inst_cluster))
golds.append(float(1.0))
instance_pos_count += 1
for neg_entity in train_neg.get(inst_cluster, []):
entities.append(neg_entity)
golds.append(float(0.0))
instance_neg_count += 1
self.update(article_text=article_text, entities=entities, golds=golds)
# dev eval
self._test_dev(dev_inst, dev_pos, dev_neg, dev_texts, print_string="dev_inter_avg", avg=True)
except ValueError as e:
print("Error in article id", article_id)
if to_print:
print()
print("Trained on", instance_pos_count, "/", instance_neg_count, "instances pos/neg")
def _test_dev(self, instances, pos, neg, texts_by_id, print_string, avg=False, calc_random=False):
predictions = list()
golds = list()
for article_id, inst_cluster_set in instances.items():
for inst_cluster in inst_cluster_set:
pos_ex = pos.get(inst_cluster)
neg_exs = neg.get(inst_cluster, [])
article = inst_cluster.split(sep="_")[0]
entity_id = inst_cluster.split(sep="_")[1]
article_doc = self.nlp(texts_by_id[article])
entities = [self.nlp(pos_ex)]
golds.append(float(1.0))
for neg_ex in neg_exs:
entities.append(self.nlp(neg_ex))
golds.append(float(0.0))
if calc_random:
preds = self._predict_random(entities=entities)
else:
preds = self._predict(article_doc=article_doc, entities=entities, avg=avg)
predictions.extend(preds)
# TODO: combine with prior probability
p, r, f = run_el.evaluate(predictions, golds, to_print=False)
if self.PRINT_F:
print("p/r/F", print_string, round(p, 1), round(r, 1), round(f, 1))
loss, d_scores = self.get_loss(self.model.ops.asarray(predictions), self.model.ops.asarray(golds))
if self.PRINT_LOSS:
print("loss", print_string, round(loss, 5))
return loss, p, r, f
def _predict(self, article_doc, entities, avg=False, apply_threshold=True):
if avg:
with self.article_encoder.use_params(self.sgd_article.averages) \
and self.entity_encoder.use_params(self.sgd_entity.averages):
doc_encoding = self.article_encoder([article_doc])[0]
entity_encodings = self.entity_encoder(entities)
else:
doc_encoding = self.article_encoder([article_doc])[0]
entity_encodings = self.entity_encoder(entities)
concat_encodings = [list(entity_encodings[i]) + list(doc_encoding) for i in range(len(entities))]
np_array_list = np.asarray(concat_encodings)
if avg:
with self.model.use_params(self.sgd.averages):
predictions = self.model(np_array_list)
else:
predictions = self.model(np_array_list)
predictions = self.model.ops.flatten(predictions)
predictions = [float(p) for p in predictions]
if apply_threshold:
predictions = [float(1.0) if p > self.CUTOFF else float(0.0) for p in predictions]
return predictions
def _predict_random(self, entities, apply_threshold=True):
if not apply_threshold:
return [float(random.uniform(0,1)) for e in entities]
else:
return [float(1.0) if random.uniform(0,1) > self.CUTOFF else float(0.0) for e in entities]
def _build_cnn(self, in_width, entity_width, article_width, hidden_1_width, hidden_2_width):
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
self.entity_encoder = self._encoder(in_width=in_width, hidden_with=hidden_1_width, end_width=entity_width)
self.article_encoder = self._encoder(in_width=in_width, hidden_with=hidden_1_width, end_width=article_width)
in_width = entity_width + article_width
out_width = hidden_2_width
self.model = Affine(out_width, in_width) \
>> LN(Maxout(out_width, out_width)) \
>> Affine(1, out_width) \
>> logistic
@staticmethod
def _encoder(in_width, hidden_with, end_width):
conv_depth = 2
cnn_maxout_pieces = 3
with Model.define_operators({">>": chain}):
convolution = Residual((ExtractWindow(nW=1) >> LN(Maxout(hidden_with, hidden_with * 3, pieces=cnn_maxout_pieces))))
encoder = SpacyVectors \
>> with_flatten(LN(Maxout(hidden_with, in_width)) >> convolution ** conv_depth, pad=conv_depth) \
>> flatten_add_lengths \
>> ParametricAttention(hidden_with)\
>> Pooling(mean_pool) \
>> Residual(zero_init(Maxout(hidden_with, hidden_with))) \
>> zero_init(Affine(end_width, hidden_with, drop_factor=0.0))
# TODO: ReLu or LN(Maxout) ?
# sum_pool or mean_pool ?
return encoder
def _begin_training(self):
self.sgd_article = create_default_optimizer(self.article_encoder.ops)
self.sgd_entity = create_default_optimizer(self.entity_encoder.ops)
self.sgd = create_default_optimizer(self.model.ops)
@staticmethod
def get_loss(predictions, golds):
d_scores = (predictions - golds)
loss = (d_scores ** 2).sum()
return loss, d_scores
# TODO: multiple docs/articles
def update(self, article_text, entities, golds, apply_threshold=True):
article_doc = self.nlp(article_text)
doc_encodings, bp_doc = self.article_encoder.begin_update([article_doc], drop=self.DROP)
doc_encoding = doc_encodings[0]
entity_docs = list(self.nlp.pipe(entities))
# print("entity_docs", type(entity_docs))
entity_encodings, bp_entity = self.entity_encoder.begin_update(entity_docs, drop=self.DROP)
# print("entity_encodings", len(entity_encodings), entity_encodings)
concat_encodings = [list(entity_encodings[i]) + list(doc_encoding) for i in range(len(entities))]
# print("concat_encodings", len(concat_encodings), concat_encodings)
predictions, bp_model = self.model.begin_update(np.asarray(concat_encodings), drop=self.DROP)
predictions = self.model.ops.flatten(predictions)
# print("predictions", predictions)
golds = self.model.ops.asarray(golds)
# print("golds", golds)
loss, d_scores = self.get_loss(predictions, golds)
if self.PRINT_LOSS and self.PRINT_TRAIN:
print("loss train", round(loss, 5))
if self.PRINT_F and self.PRINT_TRAIN:
predictions_f = [x for x in predictions]
if apply_threshold:
predictions_f = [float(1.0) if x > self.CUTOFF else float(0.0) for x in predictions_f]
p, r, f = run_el.evaluate(predictions_f, golds, to_print=False)
print("p/r/F train", round(p, 1), round(r, 1), round(f, 1))
d_scores = d_scores.reshape((-1, 1))
d_scores = d_scores.astype(np.float32)
# print("d_scores", d_scores)
model_gradient = bp_model(d_scores, sgd=self.sgd)
# print("model_gradient", model_gradient)
# concat = entity + doc, but doc is the same within this function (TODO: multiple docs/articles)
doc_gradient = model_gradient[0][self.ENTITY_WIDTH:]
entity_gradients = list()
for x in model_gradient:
entity_gradients.append(list(x[0:self.ENTITY_WIDTH]))
# print("doc_gradient", doc_gradient)
# print("entity_gradients", entity_gradients)
bp_doc([doc_gradient], sgd=self.sgd_article)
bp_entity(entity_gradients, sgd=self.sgd_entity)
def _get_training_data(self, training_dir, entity_descr_output, dev, limit, balance, to_print):
id_to_descr = kb_creator._get_id_to_description(entity_descr_output)
correct_entries, incorrect_entries = training_set_creator.read_training_entities(training_output=training_dir,
collect_correct=True,
collect_incorrect=True)
instance_by_article = dict()
local_vectors = list() # TODO: local vectors
text_by_article = dict()
pos_entities = dict()
neg_entities = dict()
cnt = 0
for f in listdir(training_dir):
if not limit or cnt < limit:
if dev == run_el.is_dev(f):
article_id = f.replace(".txt", "")
if cnt % 500 == 0 and to_print:
print(datetime.datetime.now(), "processed", cnt, "files in the training dataset")
cnt += 1
if article_id not in text_by_article:
with open(os.path.join(training_dir, f), mode="r", encoding='utf8') as file:
text = file.read()
text_by_article[article_id] = text
instance_by_article[article_id] = set()
for mention, entity_pos in correct_entries[article_id].items():
descr = id_to_descr.get(entity_pos)
if descr:
instance_by_article[article_id].add(article_id + "_" + mention)
pos_entities[article_id + "_" + mention] = descr
for mention, entity_negs in incorrect_entries[article_id].items():
neg_count = 0
for entity_neg in entity_negs:
descr = id_to_descr.get(entity_neg)
if descr:
# if balance, keep only 1 negative instance for each positive instance
if neg_count < 1 or not balance:
descr_list = neg_entities.get(article_id + "_" + mention, [])
descr_list.append(descr)
neg_entities[article_id + "_" + mention] = descr_list
neg_count += 1
if to_print:
print()
print("Processed", cnt, "training articles, dev=" + str(dev))
print()
return instance_by_article, pos_entities, neg_entities, text_by_article