mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
		
			
				
	
	
		
			331 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			331 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
from spacy.language import Language
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.lang.de import German
 | 
						|
from spacy.tokens import Doc
 | 
						|
from spacy.util import registry, SimpleFrozenDict
 | 
						|
from thinc.api import Model, Linear
 | 
						|
from thinc.config import ConfigValidationError
 | 
						|
from pydantic import StrictInt, StrictStr
 | 
						|
 | 
						|
 | 
						|
def test_pipe_function_component():
 | 
						|
    name = "test_component"
 | 
						|
 | 
						|
    @Language.component(name)
 | 
						|
    def component(doc: Doc) -> Doc:
 | 
						|
        return doc
 | 
						|
 | 
						|
    assert name in registry.factories
 | 
						|
    nlp = Language()
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.add_pipe(component)
 | 
						|
    nlp.add_pipe(name)
 | 
						|
    assert name in nlp.pipe_names
 | 
						|
    assert nlp.pipe_factories[name] == name
 | 
						|
    assert Language.get_factory_meta(name)
 | 
						|
    assert nlp.get_pipe_meta(name)
 | 
						|
    pipe = nlp.get_pipe(name)
 | 
						|
    assert pipe == component
 | 
						|
    pipe = nlp.create_pipe(name)
 | 
						|
    assert pipe == component
 | 
						|
 | 
						|
 | 
						|
def test_pipe_class_component_init():
 | 
						|
    name1 = "test_class_component1"
 | 
						|
    name2 = "test_class_component2"
 | 
						|
 | 
						|
    @Language.factory(name1)
 | 
						|
    class Component1:
 | 
						|
        def __init__(self, nlp: Language, name: str):
 | 
						|
            self.nlp = nlp
 | 
						|
 | 
						|
        def __call__(self, doc: Doc) -> Doc:
 | 
						|
            return doc
 | 
						|
 | 
						|
    class Component2:
 | 
						|
        def __init__(self, nlp: Language, name: str):
 | 
						|
            self.nlp = nlp
 | 
						|
 | 
						|
        def __call__(self, doc: Doc) -> Doc:
 | 
						|
            return doc
 | 
						|
 | 
						|
    @Language.factory(name2)
 | 
						|
    def factory(nlp: Language, name=name2):
 | 
						|
        return Component2(nlp, name)
 | 
						|
 | 
						|
    nlp = Language()
 | 
						|
    for name, Component in [(name1, Component1), (name2, Component2)]:
 | 
						|
        assert name in registry.factories
 | 
						|
        with pytest.raises(ValueError):
 | 
						|
            nlp.add_pipe(Component(nlp, name))
 | 
						|
        nlp.add_pipe(name)
 | 
						|
        assert name in nlp.pipe_names
 | 
						|
        assert nlp.pipe_factories[name] == name
 | 
						|
        assert Language.get_factory_meta(name)
 | 
						|
        assert nlp.get_pipe_meta(name)
 | 
						|
        pipe = nlp.get_pipe(name)
 | 
						|
        assert isinstance(pipe, Component)
 | 
						|
        assert isinstance(pipe.nlp, Language)
 | 
						|
        pipe = nlp.create_pipe(name)
 | 
						|
        assert isinstance(pipe, Component)
 | 
						|
        assert isinstance(pipe.nlp, Language)
 | 
						|
 | 
						|
 | 
						|
def test_pipe_class_component_config():
 | 
						|
    name = "test_class_component_config"
 | 
						|
 | 
						|
    @Language.factory(name)
 | 
						|
    class Component:
 | 
						|
        def __init__(
 | 
						|
            self, nlp: Language, name: str, value1: StrictInt, value2: StrictStr
 | 
						|
        ):
 | 
						|
            self.nlp = nlp
 | 
						|
            self.value1 = value1
 | 
						|
            self.value2 = value2
 | 
						|
            self.is_base = True
 | 
						|
 | 
						|
        def __call__(self, doc: Doc) -> Doc:
 | 
						|
            return doc
 | 
						|
 | 
						|
    @English.factory(name)
 | 
						|
    class ComponentEN:
 | 
						|
        def __init__(
 | 
						|
            self, nlp: Language, name: str, value1: StrictInt, value2: StrictStr
 | 
						|
        ):
 | 
						|
            self.nlp = nlp
 | 
						|
            self.value1 = value1
 | 
						|
            self.value2 = value2
 | 
						|
            self.is_base = False
 | 
						|
 | 
						|
        def __call__(self, doc: Doc) -> Doc:
 | 
						|
            return doc
 | 
						|
 | 
						|
    nlp = Language()
 | 
						|
    with pytest.raises(ConfigValidationError):  # no config provided
 | 
						|
        nlp.add_pipe(name)
 | 
						|
    with pytest.raises(ConfigValidationError):  # invalid config
 | 
						|
        nlp.add_pipe(name, config={"value1": "10", "value2": "hello"})
 | 
						|
    nlp.add_pipe(name, config={"value1": 10, "value2": "hello"})
 | 
						|
    pipe = nlp.get_pipe(name)
 | 
						|
    assert isinstance(pipe.nlp, Language)
 | 
						|
    assert pipe.value1 == 10
 | 
						|
    assert pipe.value2 == "hello"
 | 
						|
    assert pipe.is_base is True
 | 
						|
 | 
						|
    nlp_en = English()
 | 
						|
    with pytest.raises(ConfigValidationError):  # invalid config
 | 
						|
        nlp_en.add_pipe(name, config={"value1": "10", "value2": "hello"})
 | 
						|
    nlp_en.add_pipe(name, config={"value1": 10, "value2": "hello"})
 | 
						|
    pipe = nlp_en.get_pipe(name)
 | 
						|
    assert isinstance(pipe.nlp, English)
 | 
						|
    assert pipe.value1 == 10
 | 
						|
    assert pipe.value2 == "hello"
 | 
						|
    assert pipe.is_base is False
 | 
						|
 | 
						|
 | 
						|
def test_pipe_class_component_defaults():
 | 
						|
    name = "test_class_component_defaults"
 | 
						|
 | 
						|
    @Language.factory(name)
 | 
						|
    class Component:
 | 
						|
        def __init__(
 | 
						|
            self,
 | 
						|
            nlp: Language,
 | 
						|
            name: str,
 | 
						|
            value1: StrictInt = 10,
 | 
						|
            value2: StrictStr = "hello",
 | 
						|
        ):
 | 
						|
            self.nlp = nlp
 | 
						|
            self.value1 = value1
 | 
						|
            self.value2 = value2
 | 
						|
 | 
						|
        def __call__(self, doc: Doc) -> Doc:
 | 
						|
            return doc
 | 
						|
 | 
						|
    nlp = Language()
 | 
						|
    nlp.add_pipe(name)
 | 
						|
    pipe = nlp.get_pipe(name)
 | 
						|
    assert isinstance(pipe.nlp, Language)
 | 
						|
    assert pipe.value1 == 10
 | 
						|
    assert pipe.value2 == "hello"
 | 
						|
 | 
						|
 | 
						|
def test_pipe_class_component_model():
 | 
						|
    name = "test_class_component_model"
 | 
						|
    default_config = {
 | 
						|
        "model": {
 | 
						|
            "@architectures": "spacy.TextCat.v1",
 | 
						|
            "exclusive_classes": False,
 | 
						|
            "pretrained_vectors": None,
 | 
						|
            "width": 64,
 | 
						|
            "embed_size": 2000,
 | 
						|
            "window_size": 1,
 | 
						|
            "conv_depth": 2,
 | 
						|
            "ngram_size": 1,
 | 
						|
            "dropout": None,
 | 
						|
        },
 | 
						|
        "value1": 10,
 | 
						|
    }
 | 
						|
 | 
						|
    @Language.factory(name, default_config=default_config)
 | 
						|
    class Component:
 | 
						|
        def __init__(self, nlp: Language, model: Model, name: str, value1: StrictInt):
 | 
						|
            self.nlp = nlp
 | 
						|
            self.model = model
 | 
						|
            self.value1 = value1
 | 
						|
            self.name = name
 | 
						|
 | 
						|
        def __call__(self, doc: Doc) -> Doc:
 | 
						|
            return doc
 | 
						|
 | 
						|
    nlp = Language()
 | 
						|
    nlp.add_pipe(name)
 | 
						|
    pipe = nlp.get_pipe(name)
 | 
						|
    assert isinstance(pipe.nlp, Language)
 | 
						|
    assert pipe.value1 == 10
 | 
						|
    assert isinstance(pipe.model, Model)
 | 
						|
 | 
						|
 | 
						|
def test_pipe_class_component_model_custom():
 | 
						|
    name = "test_class_component_model_custom"
 | 
						|
    arch = f"{name}.arch"
 | 
						|
    default_config = {"value1": 1, "model": {"@architectures": arch, "nO": 0, "nI": 0}}
 | 
						|
 | 
						|
    @Language.factory(name, default_config=default_config)
 | 
						|
    class Component:
 | 
						|
        def __init__(
 | 
						|
            self, nlp: Language, model: Model, name: str, value1: StrictInt = 10
 | 
						|
        ):
 | 
						|
            self.nlp = nlp
 | 
						|
            self.model = model
 | 
						|
            self.value1 = value1
 | 
						|
            self.name = name
 | 
						|
 | 
						|
        def __call__(self, doc: Doc) -> Doc:
 | 
						|
            return doc
 | 
						|
 | 
						|
    @registry.architectures(arch)
 | 
						|
    def make_custom_arch(nO: StrictInt, nI: StrictInt):
 | 
						|
        return Linear(nO, nI)
 | 
						|
 | 
						|
    nlp = Language()
 | 
						|
    config = {"value1": 20, "model": {"@architectures": arch, "nO": 1, "nI": 2}}
 | 
						|
    nlp.add_pipe(name, config=config)
 | 
						|
    pipe = nlp.get_pipe(name)
 | 
						|
    assert isinstance(pipe.nlp, Language)
 | 
						|
    assert pipe.value1 == 20
 | 
						|
    assert isinstance(pipe.model, Model)
 | 
						|
    assert pipe.model.name == "linear"
 | 
						|
 | 
						|
    nlp = Language()
 | 
						|
    with pytest.raises(ConfigValidationError):
 | 
						|
        config = {"value1": "20", "model": {"@architectures": arch, "nO": 1, "nI": 2}}
 | 
						|
        nlp.add_pipe(name, config=config)
 | 
						|
    with pytest.raises(ConfigValidationError):
 | 
						|
        config = {"value1": 20, "model": {"@architectures": arch, "nO": 1.0, "nI": 2.0}}
 | 
						|
        nlp.add_pipe(name, config=config)
 | 
						|
 | 
						|
 | 
						|
def test_pipe_factories_wrong_formats():
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        # Decorator is not called
 | 
						|
        @Language.component
 | 
						|
        def component(foo: int, bar: str):
 | 
						|
            ...
 | 
						|
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        # Decorator is not called
 | 
						|
        @Language.factory
 | 
						|
        def factory1(foo: int, bar: str):
 | 
						|
            ...
 | 
						|
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        # Factory function is missing "nlp" and "name" arguments
 | 
						|
        @Language.factory("test_pipe_factories_missing_args")
 | 
						|
        def factory2(foo: int, bar: str):
 | 
						|
            ...
 | 
						|
 | 
						|
 | 
						|
def test_pipe_factory_meta_config_cleanup():
 | 
						|
    """Test that component-specific meta and config entries are represented
 | 
						|
    correctly and cleaned up when pipes are removed, replaced or renamed."""
 | 
						|
    nlp = Language()
 | 
						|
    nlp.add_pipe("ner", name="ner_component")
 | 
						|
    nlp.add_pipe("textcat")
 | 
						|
    assert nlp.get_factory_meta("ner")
 | 
						|
    assert nlp.get_pipe_meta("ner_component")
 | 
						|
    assert nlp.get_pipe_config("ner_component")
 | 
						|
    assert nlp.get_factory_meta("textcat")
 | 
						|
    assert nlp.get_pipe_meta("textcat")
 | 
						|
    assert nlp.get_pipe_config("textcat")
 | 
						|
    nlp.rename_pipe("textcat", "tc")
 | 
						|
    assert nlp.get_pipe_meta("tc")
 | 
						|
    assert nlp.get_pipe_config("tc")
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.remove_pipe("ner")
 | 
						|
    nlp.remove_pipe("ner_component")
 | 
						|
    assert "ner_component" not in nlp._pipe_meta
 | 
						|
    assert "ner_component" not in nlp._pipe_configs
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.replace_pipe("textcat", "parser")
 | 
						|
    nlp.replace_pipe("tc", "parser")
 | 
						|
    assert nlp.get_factory_meta("parser")
 | 
						|
    assert nlp.get_pipe_meta("tc").factory == "parser"
 | 
						|
 | 
						|
 | 
						|
def test_pipe_factories_empty_dict_default():
 | 
						|
    """Test that default config values can be empty dicts and that no config
 | 
						|
    validation error is raised."""
 | 
						|
    # TODO: fix this
 | 
						|
    name = "test_pipe_factories_empty_dict_default"
 | 
						|
 | 
						|
    @Language.factory(name, default_config={"foo": {}})
 | 
						|
    def factory(nlp: Language, name: str, foo: dict):
 | 
						|
        ...
 | 
						|
 | 
						|
    nlp = Language()
 | 
						|
    nlp.create_pipe(name)
 | 
						|
 | 
						|
 | 
						|
def test_pipe_factories_language_specific():
 | 
						|
    """Test that language sub-classes can have their own factories, with
 | 
						|
    fallbacks to the base factories."""
 | 
						|
    name1 = "specific_component1"
 | 
						|
    name2 = "specific_component2"
 | 
						|
    Language.component(name1, func=lambda: "base")
 | 
						|
    English.component(name1, func=lambda: "en")
 | 
						|
    German.component(name2, func=lambda: "de")
 | 
						|
 | 
						|
    assert Language.has_factory(name1)
 | 
						|
    assert not Language.has_factory(name2)
 | 
						|
    assert English.has_factory(name1)
 | 
						|
    assert not English.has_factory(name2)
 | 
						|
    assert German.has_factory(name1)
 | 
						|
    assert German.has_factory(name2)
 | 
						|
 | 
						|
    nlp = Language()
 | 
						|
    assert nlp.create_pipe(name1)() == "base"
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp.create_pipe(name2)
 | 
						|
    nlp_en = English()
 | 
						|
    assert nlp_en.create_pipe(name1)() == "en"
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        nlp_en.create_pipe(name2)
 | 
						|
    nlp_de = German()
 | 
						|
    assert nlp_de.create_pipe(name1)() == "base"
 | 
						|
    assert nlp_de.create_pipe(name2)() == "de"
 | 
						|
 | 
						|
 | 
						|
def test_language_factories_invalid():
 | 
						|
    """Test that assigning directly to Language.factories is now invalid and
 | 
						|
    raises a custom error."""
 | 
						|
    assert isinstance(Language.factories, SimpleFrozenDict)
 | 
						|
    with pytest.raises(NotImplementedError):
 | 
						|
        Language.factories["foo"] = "bar"
 | 
						|
    nlp = Language()
 | 
						|
    assert isinstance(nlp.factories, SimpleFrozenDict)
 | 
						|
    assert len(nlp.factories)
 | 
						|
    with pytest.raises(NotImplementedError):
 | 
						|
        nlp.factories["foo"] = "bar"
 |