mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-01 00:17:44 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			110 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			110 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //- 💫 INCLUDES > MODELS PAGE TEMPLATE
 | ||
| 
 | ||
| for id in CURRENT_MODELS
 | ||
|     - var comps = getModelComponents(id)
 | ||
|     +section(id)
 | ||
|         section(data-vue=id data-model=id)
 | ||
|             +grid("vcenter").o-no-block(id=id)
 | ||
|                 +grid-col("two-thirds")
 | ||
|                     +h(2)
 | ||
|                         +a("#" + id).u-permalink=id
 | ||
| 
 | ||
|                 +grid-col("third").u-text-right
 | ||
|                     .u-color-subtle.u-text-tiny
 | ||
|                         +button(gh("spacy-models") + "/releases", true, "secondary", "small")(v-bind:href="releaseUrl")
 | ||
|                             |  Release details
 | ||
|                         .u-padding-small Latest: #[code(v-text="version") n/a]
 | ||
| 
 | ||
|             +aside-code("Installation", "bash", "$").
 | ||
|                 python -m spacy download #{id}
 | ||
| 
 | ||
|             p(v-if="description" v-text="description")
 | ||
| 
 | ||
|             +infobox(v-if="error")
 | ||
|                 |  Unable to load model details from GitHub. To find out more
 | ||
|                 |  about this model, see the overview of the
 | ||
|                 |  #[+a(gh("spacy-models") + "/releases") latest model releases].
 | ||
| 
 | ||
|             +table.o-block-small(v-bind:data-loading="loading")
 | ||
|                 +row
 | ||
|                     +cell #[+label Language]
 | ||
|                     +cell #[+tag=comps.lang] #{LANGUAGES[comps.lang]}
 | ||
|                 for comp, label in {"Type": comps.type, "Genre": comps.genre}
 | ||
|                     +row
 | ||
|                         +cell #[+label=label]
 | ||
|                         +cell #[+tag=comp] #{MODEL_META[comp]}
 | ||
|                 +row
 | ||
|                     +cell #[+label Size]
 | ||
|                     +cell #[+tag=comps.size] #[span(v-text="sizeFull" v-if="sizeFull")] #[em(v-else="") n/a]
 | ||
| 
 | ||
|                 +row(v-if="pipeline && pipeline.length" v-cloak="")
 | ||
|                     +cell
 | ||
|                         +label Pipeline #[+help(MODEL_META.pipeline).u-color-subtle]
 | ||
|                     +cell
 | ||
|                         span(v-for="(pipe, index) in pipeline" v-if="pipeline")
 | ||
|                             code(v-text="pipe")
 | ||
|                             span(v-if="index != pipeline.length - 1") , 
 | ||
| 
 | ||
|                 +row(v-if="vectors" v-cloak="")
 | ||
|                     +cell
 | ||
|                         +label Vectors #[+help(MODEL_META.vectors).u-color-subtle]
 | ||
|                     +cell(v-text="vectors")
 | ||
| 
 | ||
|                 +row(v-if="sources && sources.length" v-cloak="")
 | ||
|                     +cell
 | ||
|                         +label Sources #[+help(MODEL_META.sources).u-color-subtle]
 | ||
|                     +cell
 | ||
|                         span(v-for="(source, index) in sources") {{ source }}
 | ||
|                             span(v-if="index != sources.length - 1") , 
 | ||
| 
 | ||
|                 +row(v-if="author" v-cloak="")
 | ||
|                     +cell #[+label Author]
 | ||
|                     +cell
 | ||
|                         +a("")(v-bind:href="url" v-if="url" v-text="author")
 | ||
|                         span(v-else="" v-text="author") {{ model.author }}
 | ||
| 
 | ||
|                 +row(v-if="license" v-cloak="")
 | ||
|                     +cell #[+label License]
 | ||
|                     +cell
 | ||
|                         +a("")(v-bind:href="modelLicenses[license]" v-if="modelLicenses[license]") {{ license }}
 | ||
|                         span(v-else="") {{ license }}
 | ||
| 
 | ||
|                 +row(v-cloak="")
 | ||
|                     +cell #[+label Compat #[+help(MODEL_META.compat).u-color-subtle]]
 | ||
|                     +cell
 | ||
|                         .o-field.u-float-left
 | ||
|                             select.o-field__select.u-text-small(v-model="spacyVersion")
 | ||
|                                 option(v-for="version in orderedCompat" v-bind:value="version") spaCy v{{ version }}
 | ||
|                         code(v-if="compatVersion" v-text="compatVersion")
 | ||
|                         em(v-else="") not compatible
 | ||
| 
 | ||
|             +grid.o-block-small(v-cloak="" v-if="hasAccuracy")
 | ||
|                 for keys, label in MODEL_BENCHMARKS
 | ||
|                     .u-flex-full.u-padding-small
 | ||
|                         +table.o-block-small
 | ||
|                             +row("head")
 | ||
|                                 +head-cell(colspan="2")=(MODEL_META["benchmark_" + label] || label)
 | ||
|                             for label, field in keys
 | ||
|                                 +row
 | ||
|                                     +cell.u-nowrap
 | ||
|                                         +label=label
 | ||
|                                             if MODEL_META[field]
 | ||
|                                                 |  #[+help(MODEL_META[field]).u-color-subtle]
 | ||
|                                     +cell("num")
 | ||
|                                         span(v-if="#{field}" v-text="#{field}")
 | ||
|                                         em(v-if="!#{field}") n/a
 | ||
| 
 | ||
|             p.u-text-small.u-color-dark(v-if="notes" v-text="notes" v-cloak="")
 | ||
| 
 | ||
|         if comps.size == "sm" && EXAMPLE_SENT_LANGS.includes(comps.lang)
 | ||
|             section
 | ||
|                 +code-exec("Test the model live").
 | ||
|                     import spacy
 | ||
|                     from spacy.lang.#{comps.lang}.examples import sentences
 | ||
| 
 | ||
|                     nlp = spacy.load('#{id}')
 | ||
|                     doc = nlp(sentences[0])
 | ||
|                     print(doc.text)
 | ||
|                     for token in doc:
 | ||
|                         print(token.text, token.pos_, token.dep_)
 |