spaCy/website/usage/examples.jade
2017-11-07 01:22:30 +01:00

180 lines
7.4 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//- 💫 DOCS > USAGE > EXAMPLES
include ../_includes/_mixins
+section("information-extraction")
+h(3, "phrase-matcher") Using spaCy's phrase matcher
+tag-new(2)
p
| This example shows how to use the new
| #[+api("phrasematcher") #[code PhraseMatcher]] to efficiently find
| entities from a large terminology list.
+github("spacy", "examples/information_extraction/phrase_matcher.py")
+h(3, "entity-relations") Extracting entity relations
p
| A simple example of extracting relations between phrases and
| entities using spaCy's named entity recognizer and the dependency
| parse. Here, we extract money and currency values (entities labelled
| as #[code MONEY]) and then check the dependency tree to find the
| noun phrase they are referring to for example: "$9.4 million"
| → "Net income".
+github("spacy", "examples/information_extraction/entity_relations.py")
+h(3, "subtrees") Navigating the parse tree and subtrees
p
| This example shows how to navigate the parse tree including subtrees
| attached to a word.
+github("spacy", "examples/information_extraction/parse_subtrees.py")
+section("pipeline")
+h(3, "custom-components-entities") Custom pipeline components and attribute extensions
+tag-new(2)
p
| This example shows the implementation of a pipeline component
| that sets entity annotations based on a list of single or
| multiple-word company names, merges entities into one token and
| sets custom attributes on the #[code Doc], #[code Span] and
| #[code Token].
+github("spacy", "examples/pipeline/custom_component_entities.py")
+h(3, "custom-components-api")
| Custom pipeline components and attribute extensions via a REST API
+tag-new(2)
p
| This example shows the implementation of a pipeline component
| that fetches country meta data via the
| #[+a("https://restcountries.eu") REST Countries API] sets entity
| annotations for countries, merges entities into one token and
| sets custom attributes on the #[code Doc], #[code Span] and
| #[code Token] for example, the capital, latitude/longitude
| coordinates and the country flag.
+github("spacy", "examples/pipeline/custom_component_countries_api.py")
+h(3, "custom-components-attr-methods") Custom method extensions
+tag-new(2)
p
| A collection of snippets showing examples of extensions adding
| custom methods to the #[code Doc], #[code Token] and
| #[code Span].
+github("spacy", "examples/pipeline/custom_attr_methods.py")
+h(3, "multi-processing") Multi-processing with Joblib
p
| This example shows how to use multiple cores to process text using
| spaCy and #[+a("https://pythonhosted.org/joblib/") Joblib]. We're
| exporting part-of-speech-tagged, true-cased, (very roughly)
| sentence-separated text, with each "sentence" on a newline, and
| spaces between tokens. Data is loaded from the IMDB movie reviews
| dataset and will be loaded automatically via Thinc's built-in dataset
| loader.
+github("spacy", "examples/pipeline/multi_processing.py")
+section("training")
+h(3, "training-ner") Training spaCy's Named Entity Recognizer
p
| This example shows how to update spaCy's entity recognizer
| with your own examples, starting off with an existing, pre-trained
| model, or from scratch using a blank #[code Language] class.
+github("spacy", "examples/training/train_ner.py")
+h(3, "new-entity-type") Training an additional entity type
p
| This script shows how to add a new entity type to an existing
| pre-trained NER model. To keep the example short and simple, only
| four sentences are provided as examples. In practice, you'll need
| many more — a few hundred would be a good start.
+github("spacy", "examples/training/train_new_entity_type.py")
+h(3, "parser") Training spaCy's Dependency Parser
p
| This example shows how to update spaCy's dependency parser,
| starting off with an existing, pre-trained model, or from scratch
| using a blank #[code Language] class.
+github("spacy", "examples/training/train_parser.py")
+h(3, "tagger") Training spaCy's Part-of-speech Tagger
p
| In this example, we're training spaCy's part-of-speech tagger with a
| custom tag map, mapping our own tags to the mapping those tags to the
| #[+a("http://universaldependencies.github.io/docs/u/pos/index.html") Universal Dependencies scheme].
+github("spacy", "examples/training/train_tagger.py")
+h(3, "intent-parser") Training a custom parser for chat intent semantics
p
| spaCy's parser component can be used to trained to predict any type
| of tree structure over your input text. You can also predict trees
| over whole documents or chat logs, with connections between the
| sentence-roots used to annotate discourse structure. In this example,
| we'll build a message parser for a common "chat intent": finding
| local businesses. Our message semantics will have the following types
| of relations: #[code ROOT], #[code PLACE], #[code QUALITY],
| #[code ATTRIBUTE], #[code TIME] and #[code LOCATION].
+github("spacy", "examples/training/train_intent_parser.py")
+h(3, "textcat") Training spaCy's text classifier
+tag-new(2)
p
| This example shows how to train a multi-label convolutional neural
| network text classifier on IMDB movie reviews, using spaCy's new
| #[+api("textcategorizer") #[code TextCategorizer]] component. The
| dataset will be loaded automatically via Thinc's built-in dataset
| loader. Predictions are available via
| #[+api("doc#attributes") #[code Doc.cats]].
+github("spacy", "examples/training/train_textcat.py")
+section("vectors")
+h(3, "fasttext") Loading pre-trained fastText vectors
p
| This simple snippet is all you need to be able to use the Facebook's
| #[+a("https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md") fastText vectors]
| (294 languages, pre-trained on Wikipedia) with spaCy. Once they're
| loaded, the vectors will be available via spaCy's built-in
| #[code similarity()] methods.
+github("spacy", "examples/vectors_fast_text.py")
+section("deep-learning")
+h(3, "keras") Text classification with Keras
p
| This example shows how to use a #[+a("https://keras.io") Keras]
| LSTM sentiment classification model in spaCy. spaCy splits
| the document into sentences, and each sentence is classified using
| the LSTM. The scores for the sentences are then aggregated to give
| the document score. This kind of hierarchical model is quite
| difficult in "pure" Keras or Tensorflow, but it's very effective.
| The Keras example on this dataset performs quite poorly, because it
| cuts off the documents so that they're a fixed size. This hurts
| review accuracy a lot, because people often summarise their rating
| in the final sentence.
+github("spacy", "examples/deep_learning_keras.py")