mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
238 lines
6.7 KiB
Python
238 lines
6.7 KiB
Python
# coding: utf8
|
|
from ...symbols import (
|
|
ADJ, DET, NOUN, NUM, PRON, PROPN, PUNCT, VERB, POS
|
|
)
|
|
from ...lemmatizer import Lemmatizer
|
|
|
|
|
|
class RussianLemmatizer(Lemmatizer):
|
|
_morph = None
|
|
|
|
def __init__(self):
|
|
super(RussianLemmatizer, self).__init__()
|
|
try:
|
|
from pymorphy2 import MorphAnalyzer
|
|
except ImportError:
|
|
raise ImportError(
|
|
'The Russian lemmatizer requires the pymorphy2 library: '
|
|
'try to fix it with "pip install pymorphy2==0.8"')
|
|
|
|
if RussianLemmatizer._morph is None:
|
|
RussianLemmatizer._morph = MorphAnalyzer()
|
|
|
|
def __call__(self, string, univ_pos, morphology=None):
|
|
univ_pos = self.normalize_univ_pos(univ_pos)
|
|
if univ_pos == 'PUNCT':
|
|
return [PUNCT_RULES.get(string, string)]
|
|
|
|
if univ_pos not in ('ADJ', 'DET', 'NOUN', 'NUM', 'PRON', 'PROPN', 'VERB'):
|
|
# Skip unchangeable pos
|
|
return [string.lower()]
|
|
|
|
analyses = self._morph.parse(string)
|
|
filtered_analyses = []
|
|
for analysis in analyses:
|
|
if not analysis.is_known:
|
|
# Skip suggested parse variant for unknown word for pymorphy
|
|
continue
|
|
analysis_pos, _ = oc2ud(str(analysis.tag))
|
|
if analysis_pos == univ_pos \
|
|
or (analysis_pos in ('NOUN', 'PROPN') and univ_pos in ('NOUN', 'PROPN')):
|
|
filtered_analyses.append(analysis)
|
|
|
|
if not len(filtered_analyses):
|
|
return [string.lower()]
|
|
if morphology is None or (len(morphology) == 1 and POS in morphology):
|
|
return list(set([analysis.normal_form for analysis in filtered_analyses]))
|
|
|
|
if univ_pos in ('ADJ', 'DET', 'NOUN', 'PROPN'):
|
|
features_to_compare = ['Case', 'Number', 'Gender']
|
|
elif univ_pos == 'NUM':
|
|
features_to_compare = ['Case', 'Gender']
|
|
elif univ_pos == 'PRON':
|
|
features_to_compare = ['Case', 'Number', 'Gender', 'Person']
|
|
else: # VERB
|
|
features_to_compare = ['Aspect', 'Gender', 'Mood', 'Number', 'Tense', 'VerbForm', 'Voice']
|
|
|
|
analyses, filtered_analyses = filtered_analyses, []
|
|
for analysis in analyses:
|
|
_, analysis_morph = oc2ud(str(analysis.tag))
|
|
for feature in features_to_compare:
|
|
if (feature in morphology and feature in analysis_morph
|
|
and morphology[feature] != analysis_morph[feature]):
|
|
break
|
|
else:
|
|
filtered_analyses.append(analysis)
|
|
|
|
if not len(filtered_analyses):
|
|
return [string.lower()]
|
|
return list(set([analysis.normal_form for analysis in filtered_analyses]))
|
|
|
|
@staticmethod
|
|
def normalize_univ_pos(univ_pos):
|
|
if isinstance(univ_pos, str):
|
|
return univ_pos.upper()
|
|
|
|
symbols_to_str = {
|
|
ADJ: 'ADJ',
|
|
DET: 'DET',
|
|
NOUN: 'NOUN',
|
|
NUM: 'NUM',
|
|
PRON: 'PRON',
|
|
PROPN: 'PROPN',
|
|
PUNCT: 'PUNCT',
|
|
VERB: 'VERB'
|
|
}
|
|
if univ_pos in symbols_to_str:
|
|
return symbols_to_str[univ_pos]
|
|
return None
|
|
|
|
def is_base_form(self, univ_pos, morphology=None):
|
|
# TODO
|
|
raise NotImplementedError
|
|
|
|
def det(self, string, morphology=None):
|
|
return self(string, 'det', morphology)
|
|
|
|
def num(self, string, morphology=None):
|
|
return self(string, 'num', morphology)
|
|
|
|
def pron(self, string, morphology=None):
|
|
return self(string, 'pron', morphology)
|
|
|
|
def lookup(self, string):
|
|
analyses = self._morph.parse(string)
|
|
if len(analyses) == 1:
|
|
return analyses[0].normal_form
|
|
return string
|
|
|
|
|
|
def oc2ud(oc_tag):
|
|
gram_map = {
|
|
'_POS': {
|
|
'ADJF': 'ADJ',
|
|
'ADJS': 'ADJ',
|
|
'ADVB': 'ADV',
|
|
'Apro': 'DET',
|
|
'COMP': 'ADJ', # Can also be an ADV - unchangeable
|
|
'CONJ': 'CCONJ', # Can also be a SCONJ - both unchangeable ones
|
|
'GRND': 'VERB',
|
|
'INFN': 'VERB',
|
|
'INTJ': 'INTJ',
|
|
'NOUN': 'NOUN',
|
|
'NPRO': 'PRON',
|
|
'NUMR': 'NUM',
|
|
'NUMB': 'NUM',
|
|
'PNCT': 'PUNCT',
|
|
'PRCL': 'PART',
|
|
'PREP': 'ADP',
|
|
'PRTF': 'VERB',
|
|
'PRTS': 'VERB',
|
|
'VERB': 'VERB',
|
|
},
|
|
'Animacy': {
|
|
'anim': 'Anim',
|
|
'inan': 'Inan',
|
|
},
|
|
'Aspect': {
|
|
'impf': 'Imp',
|
|
'perf': 'Perf',
|
|
},
|
|
'Case': {
|
|
'ablt': 'Ins',
|
|
'accs': 'Acc',
|
|
'datv': 'Dat',
|
|
'gen1': 'Gen',
|
|
'gen2': 'Gen',
|
|
'gent': 'Gen',
|
|
'loc2': 'Loc',
|
|
'loct': 'Loc',
|
|
'nomn': 'Nom',
|
|
'voct': 'Voc',
|
|
},
|
|
'Degree': {
|
|
'COMP': 'Cmp',
|
|
'Supr': 'Sup',
|
|
},
|
|
'Gender': {
|
|
'femn': 'Fem',
|
|
'masc': 'Masc',
|
|
'neut': 'Neut',
|
|
},
|
|
'Mood': {
|
|
'impr': 'Imp',
|
|
'indc': 'Ind',
|
|
},
|
|
'Number': {
|
|
'plur': 'Plur',
|
|
'sing': 'Sing',
|
|
},
|
|
'NumForm': {
|
|
'NUMB': 'Digit',
|
|
},
|
|
'Person': {
|
|
'1per': '1',
|
|
'2per': '2',
|
|
'3per': '3',
|
|
'excl': '2',
|
|
'incl': '1',
|
|
},
|
|
'Tense': {
|
|
'futr': 'Fut',
|
|
'past': 'Past',
|
|
'pres': 'Pres',
|
|
},
|
|
'Variant': {
|
|
'ADJS': 'Brev',
|
|
'PRTS': 'Brev',
|
|
},
|
|
'VerbForm': {
|
|
'GRND': 'Conv',
|
|
'INFN': 'Inf',
|
|
'PRTF': 'Part',
|
|
'PRTS': 'Part',
|
|
'VERB': 'Fin',
|
|
},
|
|
'Voice': {
|
|
'actv': 'Act',
|
|
'pssv': 'Pass',
|
|
},
|
|
'Abbr': {
|
|
'Abbr': 'Yes'
|
|
}
|
|
}
|
|
|
|
pos = 'X'
|
|
morphology = dict()
|
|
unmatched = set()
|
|
|
|
grams = oc_tag.replace(' ', ',').split(',')
|
|
for gram in grams:
|
|
match = False
|
|
for categ, gmap in sorted(gram_map.items()):
|
|
if gram in gmap:
|
|
match = True
|
|
if categ == '_POS':
|
|
pos = gmap[gram]
|
|
else:
|
|
morphology[categ] = gmap[gram]
|
|
if not match:
|
|
unmatched.add(gram)
|
|
|
|
while len(unmatched) > 0:
|
|
gram = unmatched.pop()
|
|
if gram in ('Name', 'Patr', 'Surn', 'Geox', 'Orgn'):
|
|
pos = 'PROPN'
|
|
elif gram == 'Auxt':
|
|
pos = 'AUX'
|
|
elif gram == 'Pltm':
|
|
morphology['Number'] = 'Ptan'
|
|
|
|
return pos, morphology
|
|
|
|
|
|
PUNCT_RULES = {
|
|
"«": "\"",
|
|
"»": "\""
|
|
}
|