mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 18:07:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			297 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			297 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import re
 | 
						|
 | 
						|
from .conll_ner_to_docs import n_sents_info
 | 
						|
from ...training import iob_to_biluo, biluo_tags_to_spans
 | 
						|
from ...tokens import Doc, Token, Span
 | 
						|
from ...vocab import Vocab
 | 
						|
from wasabi import Printer
 | 
						|
 | 
						|
 | 
						|
def conllu_to_docs(
 | 
						|
    input_data,
 | 
						|
    n_sents=10,
 | 
						|
    append_morphology=False,
 | 
						|
    ner_map=None,
 | 
						|
    merge_subtokens=False,
 | 
						|
    no_print=False,
 | 
						|
    **_
 | 
						|
):
 | 
						|
    """
 | 
						|
    Convert conllu files into JSON format for use with train cli.
 | 
						|
    append_morphology parameter enables appending morphology to tags, which is
 | 
						|
    useful for languages such as Spanish, where UD tags are not so rich.
 | 
						|
 | 
						|
    Extract NER tags if available and convert them so that they follow
 | 
						|
    BILUO and the Wikipedia scheme
 | 
						|
    """
 | 
						|
    MISC_NER_PATTERN = "^((?:name|NE)=)?([BILU])-([A-Z_]+)|O$"
 | 
						|
    msg = Printer(no_print=no_print)
 | 
						|
    n_sents_info(msg, n_sents)
 | 
						|
    sent_docs = read_conllx(
 | 
						|
        input_data,
 | 
						|
        append_morphology=append_morphology,
 | 
						|
        ner_tag_pattern=MISC_NER_PATTERN,
 | 
						|
        ner_map=ner_map,
 | 
						|
        merge_subtokens=merge_subtokens,
 | 
						|
    )
 | 
						|
    sent_docs_to_merge = []
 | 
						|
    for sent_doc in sent_docs:
 | 
						|
        sent_docs_to_merge.append(sent_doc)
 | 
						|
        if len(sent_docs_to_merge) % n_sents == 0:
 | 
						|
            yield Doc.from_docs(sent_docs_to_merge)
 | 
						|
            sent_docs_to_merge = []
 | 
						|
    if sent_docs_to_merge:
 | 
						|
        yield Doc.from_docs(sent_docs_to_merge)
 | 
						|
 | 
						|
 | 
						|
def has_ner(input_data, ner_tag_pattern):
 | 
						|
    """
 | 
						|
    Check the MISC column for NER tags.
 | 
						|
    """
 | 
						|
    for sent in input_data.strip().split("\n\n"):
 | 
						|
        lines = sent.strip().split("\n")
 | 
						|
        if lines:
 | 
						|
            while lines[0].startswith("#"):
 | 
						|
                lines.pop(0)
 | 
						|
            for line in lines:
 | 
						|
                parts = line.split("\t")
 | 
						|
                id_, word, lemma, pos, tag, morph, head, dep, _1, misc = parts
 | 
						|
                for misc_part in misc.split("|"):
 | 
						|
                    if re.match(ner_tag_pattern, misc_part):
 | 
						|
                        return True
 | 
						|
    return False
 | 
						|
 | 
						|
 | 
						|
def read_conllx(
 | 
						|
    input_data,
 | 
						|
    append_morphology=False,
 | 
						|
    merge_subtokens=False,
 | 
						|
    ner_tag_pattern="",
 | 
						|
    ner_map=None,
 | 
						|
):
 | 
						|
    """Yield docs, one for each sentence"""
 | 
						|
    vocab = Vocab()  # need vocab to make a minimal Doc
 | 
						|
    for sent in input_data.strip().split("\n\n"):
 | 
						|
        lines = sent.strip().split("\n")
 | 
						|
        if lines:
 | 
						|
            while lines[0].startswith("#"):
 | 
						|
                lines.pop(0)
 | 
						|
            doc = conllu_sentence_to_doc(
 | 
						|
                vocab,
 | 
						|
                lines,
 | 
						|
                ner_tag_pattern,
 | 
						|
                merge_subtokens=merge_subtokens,
 | 
						|
                append_morphology=append_morphology,
 | 
						|
                ner_map=ner_map,
 | 
						|
            )
 | 
						|
            yield doc
 | 
						|
 | 
						|
 | 
						|
def get_entities(lines, tag_pattern, ner_map=None):
 | 
						|
    """Find entities in the MISC column according to the pattern and map to
 | 
						|
    final entity type with `ner_map` if mapping present. Entity tag is 'O' if
 | 
						|
    the pattern is not matched.
 | 
						|
 | 
						|
    lines (str): CONLL-U lines for one sentences
 | 
						|
    tag_pattern (str): Regex pattern for entity tag
 | 
						|
    ner_map (dict): Map old NER tag names to new ones, '' maps to O.
 | 
						|
    RETURNS (list): List of BILUO entity tags
 | 
						|
    """
 | 
						|
    miscs = []
 | 
						|
    for line in lines:
 | 
						|
        parts = line.split("\t")
 | 
						|
        id_, word, lemma, pos, tag, morph, head, dep, _1, misc = parts
 | 
						|
        if "-" in id_ or "." in id_:
 | 
						|
            continue
 | 
						|
        miscs.append(misc)
 | 
						|
 | 
						|
    iob = []
 | 
						|
    for misc in miscs:
 | 
						|
        iob_tag = "O"
 | 
						|
        for misc_part in misc.split("|"):
 | 
						|
            tag_match = re.match(tag_pattern, misc_part)
 | 
						|
            if tag_match:
 | 
						|
                prefix = tag_match.group(2)
 | 
						|
                suffix = tag_match.group(3)
 | 
						|
                if prefix and suffix:
 | 
						|
                    iob_tag = prefix + "-" + suffix
 | 
						|
                    if ner_map:
 | 
						|
                        suffix = ner_map.get(suffix, suffix)
 | 
						|
                        if suffix == "":
 | 
						|
                            iob_tag = "O"
 | 
						|
                        else:
 | 
						|
                            iob_tag = prefix + "-" + suffix
 | 
						|
                break
 | 
						|
        iob.append(iob_tag)
 | 
						|
    return iob_to_biluo(iob)
 | 
						|
 | 
						|
 | 
						|
def conllu_sentence_to_doc(
 | 
						|
    vocab,
 | 
						|
    lines,
 | 
						|
    ner_tag_pattern,
 | 
						|
    merge_subtokens=False,
 | 
						|
    append_morphology=False,
 | 
						|
    ner_map=None,
 | 
						|
):
 | 
						|
    """Create an Example from the lines for one CoNLL-U sentence, merging
 | 
						|
    subtokens and appending morphology to tags if required.
 | 
						|
 | 
						|
    lines (str): The non-comment lines for a CoNLL-U sentence
 | 
						|
    ner_tag_pattern (str): The regex pattern for matching NER in MISC col
 | 
						|
    RETURNS (Example): An example containing the annotation
 | 
						|
    """
 | 
						|
    # create a Doc with each subtoken as its own token
 | 
						|
    # if merging subtokens, each subtoken orth is the merged subtoken form
 | 
						|
    if not Token.has_extension("merged_orth"):
 | 
						|
        Token.set_extension("merged_orth", default="")
 | 
						|
    if not Token.has_extension("merged_lemma"):
 | 
						|
        Token.set_extension("merged_lemma", default="")
 | 
						|
    if not Token.has_extension("merged_morph"):
 | 
						|
        Token.set_extension("merged_morph", default="")
 | 
						|
    if not Token.has_extension("merged_spaceafter"):
 | 
						|
        Token.set_extension("merged_spaceafter", default="")
 | 
						|
    words, spaces, tags, poses, morphs, lemmas = [], [], [], [], [], []
 | 
						|
    heads, deps = [], []
 | 
						|
    subtok_word = ""
 | 
						|
    in_subtok = False
 | 
						|
    for i in range(len(lines)):
 | 
						|
        line = lines[i]
 | 
						|
        parts = line.split("\t")
 | 
						|
        id_, word, lemma, pos, tag, morph, head, dep, _1, misc = parts
 | 
						|
        if "." in id_:
 | 
						|
            continue
 | 
						|
        if "-" in id_:
 | 
						|
            in_subtok = True
 | 
						|
        if "-" in id_:
 | 
						|
            in_subtok = True
 | 
						|
            subtok_word = word
 | 
						|
            subtok_start, subtok_end = id_.split("-")
 | 
						|
            subtok_spaceafter = "SpaceAfter=No" not in misc
 | 
						|
            continue
 | 
						|
        if merge_subtokens and in_subtok:
 | 
						|
            words.append(subtok_word)
 | 
						|
        else:
 | 
						|
            words.append(word)
 | 
						|
        if in_subtok:
 | 
						|
            if id_ == subtok_end:
 | 
						|
                spaces.append(subtok_spaceafter)
 | 
						|
            else:
 | 
						|
                spaces.append(False)
 | 
						|
        elif "SpaceAfter=No" in misc:
 | 
						|
            spaces.append(False)
 | 
						|
        else:
 | 
						|
            spaces.append(True)
 | 
						|
        if in_subtok and id_ == subtok_end:
 | 
						|
            subtok_word = ""
 | 
						|
            in_subtok = False
 | 
						|
        id_ = int(id_) - 1
 | 
						|
        head = (int(head) - 1) if head not in ("0", "_") else id_
 | 
						|
        tag = pos if tag == "_" else tag
 | 
						|
        morph = morph if morph != "_" else ""
 | 
						|
        dep = "ROOT" if dep == "root" else dep
 | 
						|
        lemmas.append(lemma)
 | 
						|
        poses.append(pos)
 | 
						|
        tags.append(tag)
 | 
						|
        morphs.append(morph)
 | 
						|
        heads.append(head)
 | 
						|
        deps.append(dep)
 | 
						|
 | 
						|
    doc = Doc(
 | 
						|
        vocab,
 | 
						|
        words=words,
 | 
						|
        spaces=spaces,
 | 
						|
        tags=tags,
 | 
						|
        pos=poses,
 | 
						|
        deps=deps,
 | 
						|
        lemmas=lemmas,
 | 
						|
        morphs=morphs,
 | 
						|
        heads=heads,
 | 
						|
    )
 | 
						|
    for i in range(len(doc)):
 | 
						|
        doc[i]._.merged_orth = words[i]
 | 
						|
        doc[i]._.merged_morph = morphs[i]
 | 
						|
        doc[i]._.merged_lemma = lemmas[i]
 | 
						|
        doc[i]._.merged_spaceafter = spaces[i]
 | 
						|
    ents = get_entities(lines, ner_tag_pattern, ner_map)
 | 
						|
    doc.ents = biluo_tags_to_spans(doc, ents)
 | 
						|
 | 
						|
    if merge_subtokens:
 | 
						|
        doc = merge_conllu_subtokens(lines, doc)
 | 
						|
 | 
						|
    # create final Doc from custom Doc annotation
 | 
						|
    words, spaces, tags, morphs, lemmas, poses = [], [], [], [], [], []
 | 
						|
    heads, deps = [], []
 | 
						|
    for i, t in enumerate(doc):
 | 
						|
        words.append(t._.merged_orth)
 | 
						|
        lemmas.append(t._.merged_lemma)
 | 
						|
        spaces.append(t._.merged_spaceafter)
 | 
						|
        morphs.append(t._.merged_morph)
 | 
						|
        if append_morphology and t._.merged_morph:
 | 
						|
            tags.append(t.tag_ + "__" + t._.merged_morph)
 | 
						|
        else:
 | 
						|
            tags.append(t.tag_)
 | 
						|
        poses.append(t.pos_)
 | 
						|
        heads.append(t.head.i)
 | 
						|
        deps.append(t.dep_)
 | 
						|
 | 
						|
    doc_x = Doc(
 | 
						|
        vocab,
 | 
						|
        words=words,
 | 
						|
        spaces=spaces,
 | 
						|
        tags=tags,
 | 
						|
        morphs=morphs,
 | 
						|
        lemmas=lemmas,
 | 
						|
        pos=poses,
 | 
						|
        deps=deps,
 | 
						|
        heads=heads,
 | 
						|
    )
 | 
						|
    doc_x.ents = [Span(doc_x, ent.start, ent.end, label=ent.label) for ent in doc.ents]
 | 
						|
 | 
						|
    return doc_x
 | 
						|
 | 
						|
 | 
						|
def merge_conllu_subtokens(lines, doc):
 | 
						|
    # identify and process all subtoken spans to prepare attrs for merging
 | 
						|
    subtok_spans = []
 | 
						|
    for line in lines:
 | 
						|
        parts = line.split("\t")
 | 
						|
        id_, word, lemma, pos, tag, morph, head, dep, _1, misc = parts
 | 
						|
        if "-" in id_:
 | 
						|
            subtok_start, subtok_end = id_.split("-")
 | 
						|
            subtok_span = doc[int(subtok_start) - 1 : int(subtok_end)]
 | 
						|
            subtok_spans.append(subtok_span)
 | 
						|
            # create merged tag, morph, and lemma values
 | 
						|
            tags = []
 | 
						|
            morphs = {}
 | 
						|
            lemmas = []
 | 
						|
            for token in subtok_span:
 | 
						|
                tags.append(token.tag_)
 | 
						|
                lemmas.append(token.lemma_)
 | 
						|
                if token._.merged_morph:
 | 
						|
                    for feature in token._.merged_morph.split("|"):
 | 
						|
                        field, values = feature.split("=", 1)
 | 
						|
                        if field not in morphs:
 | 
						|
                            morphs[field] = set()
 | 
						|
                        for value in values.split(","):
 | 
						|
                            morphs[field].add(value)
 | 
						|
            # create merged features for each morph field
 | 
						|
            for field, values in morphs.items():
 | 
						|
                morphs[field] = field + "=" + ",".join(sorted(values))
 | 
						|
            # set the same attrs on all subtok tokens so that whatever head the
 | 
						|
            # retokenizer chooses, the final attrs are available on that token
 | 
						|
            for token in subtok_span:
 | 
						|
                token._.merged_orth = token.orth_
 | 
						|
                token._.merged_lemma = " ".join(lemmas)
 | 
						|
                token.tag_ = "_".join(tags)
 | 
						|
                token._.merged_morph = "|".join(sorted(morphs.values()))
 | 
						|
                token._.merged_spaceafter = (
 | 
						|
                    True if subtok_span[-1].whitespace_ else False
 | 
						|
                )
 | 
						|
 | 
						|
    with doc.retokenize() as retokenizer:
 | 
						|
        for span in subtok_spans:
 | 
						|
            retokenizer.merge(span)
 | 
						|
 | 
						|
    return doc
 |