spaCy/spacy/lang/uk/lemmatizer.py
Julia Makogon f1c3108d52 Fixing pymorphy2 dependency issue (#3329) (closes #3327)
* Classes for Ukrainian; small fix in Russian.

* Contributor agreement

* pymorphy2 initialization split for ru and uk (#3327)

* stop-words fixed

* Unit-tests updated
2019-02-25 15:48:17 +01:00

240 lines
6.9 KiB
Python

# coding: utf8
from ...symbols import (
ADJ, DET, NOUN, NUM, PRON, PROPN, PUNCT, VERB, POS
)
from ...lemmatizer import Lemmatizer
class UkrainianLemmatizer(Lemmatizer):
_morph = None
def __init__(self):
super(UkrainianLemmatizer, self).__init__()
try:
from pymorphy2 import MorphAnalyzer
if UkrainianLemmatizer._morph is None:
UkrainianLemmatizer._morph = MorphAnalyzer(lang='uk')
except (ImportError, TypeError):
raise ImportError(
'The Ukrainian lemmatizer requires the pymorphy2 library and dictionaries: '
'try to fix it with'
'"pip uninstall pymorphy2"'
'"pip install git+https://github.com/kmike/pymorphy2.git pymorphy2-dicts-uk"')
def __call__(self, string, univ_pos, morphology=None):
univ_pos = self.normalize_univ_pos(univ_pos)
if univ_pos == 'PUNCT':
return [PUNCT_RULES.get(string, string)]
if univ_pos not in ('ADJ', 'DET', 'NOUN', 'NUM', 'PRON', 'PROPN', 'VERB'):
# Skip unchangeable pos
return [string.lower()]
analyses = self._morph.parse(string)
filtered_analyses = []
for analysis in analyses:
if not analysis.is_known:
# Skip suggested parse variant for unknown word for pymorphy
continue
analysis_pos, _ = oc2ud(str(analysis.tag))
if analysis_pos == univ_pos \
or (analysis_pos in ('NOUN', 'PROPN') and univ_pos in ('NOUN', 'PROPN')):
filtered_analyses.append(analysis)
if not len(filtered_analyses):
return [string.lower()]
if morphology is None or (len(morphology) == 1 and POS in morphology):
return list(set([analysis.normal_form for analysis in filtered_analyses]))
if univ_pos in ('ADJ', 'DET', 'NOUN', 'PROPN'):
features_to_compare = ['Case', 'Number', 'Gender']
elif univ_pos == 'NUM':
features_to_compare = ['Case', 'Gender']
elif univ_pos == 'PRON':
features_to_compare = ['Case', 'Number', 'Gender', 'Person']
else: # VERB
features_to_compare = ['Aspect', 'Gender', 'Mood', 'Number', 'Tense', 'VerbForm', 'Voice']
analyses, filtered_analyses = filtered_analyses, []
for analysis in analyses:
_, analysis_morph = oc2ud(str(analysis.tag))
for feature in features_to_compare:
if (feature in morphology and feature in analysis_morph
and morphology[feature] != analysis_morph[feature]):
break
else:
filtered_analyses.append(analysis)
if not len(filtered_analyses):
return [string.lower()]
return list(set([analysis.normal_form for analysis in filtered_analyses]))
@staticmethod
def normalize_univ_pos(univ_pos):
if isinstance(univ_pos, str):
return univ_pos.upper()
symbols_to_str = {
ADJ: 'ADJ',
DET: 'DET',
NOUN: 'NOUN',
NUM: 'NUM',
PRON: 'PRON',
PROPN: 'PROPN',
PUNCT: 'PUNCT',
VERB: 'VERB'
}
if univ_pos in symbols_to_str:
return symbols_to_str[univ_pos]
return None
def is_base_form(self, univ_pos, morphology=None):
# TODO
raise NotImplementedError
def det(self, string, morphology=None):
return self(string, 'det', morphology)
def num(self, string, morphology=None):
return self(string, 'num', morphology)
def pron(self, string, morphology=None):
return self(string, 'pron', morphology)
def lookup(self, string):
analyses = self._morph.parse(string)
if len(analyses) == 1:
return analyses[0].normal_form
return string
def oc2ud(oc_tag):
gram_map = {
'_POS': {
'ADJF': 'ADJ',
'ADJS': 'ADJ',
'ADVB': 'ADV',
'Apro': 'DET',
'COMP': 'ADJ', # Can also be an ADV - unchangeable
'CONJ': 'CCONJ', # Can also be a SCONJ - both unchangeable ones
'GRND': 'VERB',
'INFN': 'VERB',
'INTJ': 'INTJ',
'NOUN': 'NOUN',
'NPRO': 'PRON',
'NUMR': 'NUM',
'NUMB': 'NUM',
'PNCT': 'PUNCT',
'PRCL': 'PART',
'PREP': 'ADP',
'PRTF': 'VERB',
'PRTS': 'VERB',
'VERB': 'VERB',
},
'Animacy': {
'anim': 'Anim',
'inan': 'Inan',
},
'Aspect': {
'impf': 'Imp',
'perf': 'Perf',
},
'Case': {
'ablt': 'Ins',
'accs': 'Acc',
'datv': 'Dat',
'gen1': 'Gen',
'gen2': 'Gen',
'gent': 'Gen',
'loc2': 'Loc',
'loct': 'Loc',
'nomn': 'Nom',
'voct': 'Voc',
},
'Degree': {
'COMP': 'Cmp',
'Supr': 'Sup',
},
'Gender': {
'femn': 'Fem',
'masc': 'Masc',
'neut': 'Neut',
},
'Mood': {
'impr': 'Imp',
'indc': 'Ind',
},
'Number': {
'plur': 'Plur',
'sing': 'Sing',
},
'NumForm': {
'NUMB': 'Digit',
},
'Person': {
'1per': '1',
'2per': '2',
'3per': '3',
'excl': '2',
'incl': '1',
},
'Tense': {
'futr': 'Fut',
'past': 'Past',
'pres': 'Pres',
},
'Variant': {
'ADJS': 'Brev',
'PRTS': 'Brev',
},
'VerbForm': {
'GRND': 'Conv',
'INFN': 'Inf',
'PRTF': 'Part',
'PRTS': 'Part',
'VERB': 'Fin',
},
'Voice': {
'actv': 'Act',
'pssv': 'Pass',
},
'Abbr': {
'Abbr': 'Yes'
}
}
pos = 'X'
morphology = dict()
unmatched = set()
grams = oc_tag.replace(' ', ',').split(',')
for gram in grams:
match = False
for categ, gmap in sorted(gram_map.items()):
if gram in gmap:
match = True
if categ == '_POS':
pos = gmap[gram]
else:
morphology[categ] = gmap[gram]
if not match:
unmatched.add(gram)
while len(unmatched) > 0:
gram = unmatched.pop()
if gram in ('Name', 'Patr', 'Surn', 'Geox', 'Orgn'):
pos = 'PROPN'
elif gram == 'Auxt':
pos = 'AUX'
elif gram == 'Pltm':
morphology['Number'] = 'Ptan'
return pos, morphology
PUNCT_RULES = {
"«": "\"",
"»": "\""
}