spaCy/spacy/tests/matcher/test_matcher_api.py
2023-06-26 11:41:03 +02:00

914 lines
29 KiB
Python

import pytest
from mock import Mock
from spacy.matcher import Matcher
from spacy.tokens import Doc, Span, Token
from ..doc.test_underscore import clean_underscore # noqa: F401
@pytest.fixture
def matcher(en_vocab):
rules = {
"JS": [[{"ORTH": "JavaScript"}]],
"GoogleNow": [[{"ORTH": "Google"}, {"ORTH": "Now"}]],
"Java": [[{"LOWER": "java"}]],
}
matcher = Matcher(en_vocab)
for key, patterns in rules.items():
matcher.add(key, patterns)
return matcher
def test_matcher_from_api_docs(en_vocab):
matcher = Matcher(en_vocab)
pattern = [{"ORTH": "test"}]
assert len(matcher) == 0
matcher.add("Rule", [pattern])
assert len(matcher) == 1
matcher.remove("Rule")
assert "Rule" not in matcher
matcher.add("Rule", [pattern])
assert "Rule" in matcher
on_match, patterns = matcher.get("Rule")
assert len(patterns[0])
def test_matcher_empty_patterns_warns(en_vocab):
matcher = Matcher(en_vocab)
assert len(matcher) == 0
doc = Doc(en_vocab, words=["This", "is", "quite", "something"])
with pytest.warns(UserWarning):
matcher(doc)
assert len(doc.ents) == 0
def test_matcher_from_usage_docs(en_vocab):
text = "Wow 😀 This is really cool! 😂 😂"
doc = Doc(en_vocab, words=text.split(" "))
pos_emoji = ["😀", "😃", "😂", "🤣", "😊", "😍"]
pos_patterns = [[{"ORTH": emoji}] for emoji in pos_emoji]
def label_sentiment(matcher, doc, i, matches):
match_id, start, end = matches[i]
span = doc[start:end]
with doc.retokenize() as retokenizer:
retokenizer.merge(span)
token = doc[start]
token.vocab[token.text].norm_ = "happy emoji"
matcher = Matcher(en_vocab)
matcher.add("HAPPY", pos_patterns, on_match=label_sentiment)
matcher(doc)
assert doc[1].norm_ == "happy emoji"
def test_matcher_len_contains(matcher):
assert len(matcher) == 3
matcher.add("TEST", [[{"ORTH": "test"}]])
assert "TEST" in matcher
assert "TEST2" not in matcher
def test_matcher_add_new_api(en_vocab):
doc = Doc(en_vocab, words=["a", "b"])
patterns = [[{"TEXT": "a"}], [{"TEXT": "a"}, {"TEXT": "b"}]]
matcher = Matcher(en_vocab)
on_match = Mock()
matcher = Matcher(en_vocab)
matcher.add("NEW_API", patterns)
assert len(matcher(doc)) == 2
matcher = Matcher(en_vocab)
on_match = Mock()
matcher.add("NEW_API_CALLBACK", patterns, on_match=on_match)
assert len(matcher(doc)) == 2
assert on_match.call_count == 2
def test_matcher_no_match(matcher):
doc = Doc(matcher.vocab, words=["I", "like", "cheese", "."])
assert matcher(doc) == []
def test_matcher_match_start(matcher):
doc = Doc(matcher.vocab, words=["JavaScript", "is", "good"])
assert matcher(doc) == [(matcher.vocab.strings["JS"], 0, 1)]
def test_matcher_match_end(matcher):
words = ["I", "like", "java"]
doc = Doc(matcher.vocab, words=words)
assert matcher(doc) == [(doc.vocab.strings["Java"], 2, 3)]
def test_matcher_match_middle(matcher):
words = ["I", "like", "Google", "Now", "best"]
doc = Doc(matcher.vocab, words=words)
assert matcher(doc) == [(doc.vocab.strings["GoogleNow"], 2, 4)]
def test_matcher_match_multi(matcher):
words = ["I", "like", "Google", "Now", "and", "java", "best"]
doc = Doc(matcher.vocab, words=words)
assert matcher(doc) == [
(doc.vocab.strings["GoogleNow"], 2, 4),
(doc.vocab.strings["Java"], 5, 6),
]
@pytest.mark.parametrize(
"rules,match_locs",
[
(
{
"GoogleNow": [[{"ORTH": {"FUZZY": "Google"}}, {"ORTH": "Now"}]],
},
[(2, 4)],
),
(
{
"Java": [[{"LOWER": {"FUZZY": "java"}}]],
},
[(5, 6)],
),
(
{
"JS": [[{"ORTH": {"FUZZY": "JavaScript"}}]],
"GoogleNow": [[{"ORTH": {"FUZZY": "Google"}}, {"ORTH": "Now"}]],
"Java": [[{"LOWER": {"FUZZY": "java"}}]],
},
[(2, 4), (5, 6), (8, 9)],
),
# only the second pattern matches (check that predicate keys used for
# caching don't collide)
(
{
"A": [[{"ORTH": {"FUZZY": "Javascripts"}}]],
"B": [[{"ORTH": {"FUZZY5": "Javascripts"}}]],
},
[(8, 9)],
),
],
)
def test_matcher_match_fuzzy(en_vocab, rules, match_locs):
words = ["They", "like", "Goggle", "Now", "and", "Jav", "but", "not", "JvvaScrpt"]
doc = Doc(en_vocab, words=words)
matcher = Matcher(en_vocab)
for key, patterns in rules.items():
matcher.add(key, patterns)
assert match_locs == [(start, end) for m_id, start, end in matcher(doc)]
@pytest.mark.parametrize("set_op", ["IN", "NOT_IN"])
def test_matcher_match_fuzzy_set_op_longest(en_vocab, set_op):
rules = {
"GoogleNow": [[{"ORTH": {"FUZZY": {set_op: ["Google", "Now"]}}, "OP": "+"}]]
}
matcher = Matcher(en_vocab)
for key, patterns in rules.items():
matcher.add(key, patterns, greedy="LONGEST")
words = ["They", "like", "Goggle", "Noo"]
doc = Doc(en_vocab, words=words)
assert len(matcher(doc)) == 1
def test_matcher_match_fuzzy_set_multiple(en_vocab):
rules = {
"GoogleNow": [
[
{
"ORTH": {"FUZZY": {"IN": ["Google", "Now"]}, "NOT_IN": ["Goggle"]},
"OP": "+",
}
]
]
}
matcher = Matcher(en_vocab)
for key, patterns in rules.items():
matcher.add(key, patterns, greedy="LONGEST")
words = ["They", "like", "Goggle", "Noo"]
doc = Doc(matcher.vocab, words=words)
assert matcher(doc) == [
(doc.vocab.strings["GoogleNow"], 3, 4),
]
@pytest.mark.parametrize("fuzzyn", range(1, 10))
def test_matcher_match_fuzzyn_all_insertions(en_vocab, fuzzyn):
matcher = Matcher(en_vocab)
matcher.add("GoogleNow", [[{"ORTH": {f"FUZZY{fuzzyn}": "GoogleNow"}}]])
# words with increasing edit distance
words = ["GoogleNow" + "a" * i for i in range(0, 10)]
doc = Doc(en_vocab, words)
assert len(matcher(doc)) == fuzzyn + 1
@pytest.mark.parametrize("fuzzyn", range(1, 6))
def test_matcher_match_fuzzyn_various_edits(en_vocab, fuzzyn):
matcher = Matcher(en_vocab)
matcher.add("GoogleNow", [[{"ORTH": {f"FUZZY{fuzzyn}": "GoogleNow"}}]])
# words with increasing edit distance of different edit types
words = [
"GoogleNow",
"GoogleNuw",
"GoogleNuew",
"GoogleNoweee",
"GiggleNuw3",
"gouggle5New",
]
doc = Doc(en_vocab, words)
assert len(matcher(doc)) == fuzzyn + 1
@pytest.mark.parametrize("greedy", ["FIRST", "LONGEST"])
@pytest.mark.parametrize("set_op", ["IN", "NOT_IN"])
def test_matcher_match_fuzzyn_set_op_longest(en_vocab, greedy, set_op):
rules = {
"GoogleNow": [[{"ORTH": {"FUZZY2": {set_op: ["Google", "Now"]}}, "OP": "+"}]]
}
matcher = Matcher(en_vocab)
for key, patterns in rules.items():
matcher.add(key, patterns, greedy=greedy)
words = ["They", "like", "Goggle", "Noo"]
doc = Doc(matcher.vocab, words=words)
spans = matcher(doc, as_spans=True)
assert len(spans) == 1
if set_op == "IN":
assert spans[0].text == "Goggle Noo"
else:
assert spans[0].text == "They like"
def test_matcher_match_fuzzyn_set_multiple(en_vocab):
rules = {
"GoogleNow": [
[
{
"ORTH": {"FUZZY1": {"IN": ["Google", "Now"]}, "NOT_IN": ["Goggle"]},
"OP": "+",
}
]
]
}
matcher = Matcher(en_vocab)
for key, patterns in rules.items():
matcher.add(key, patterns, greedy="LONGEST")
words = ["They", "like", "Goggle", "Noo"]
doc = Doc(matcher.vocab, words=words)
assert matcher(doc) == [
(doc.vocab.strings["GoogleNow"], 3, 4),
]
def test_matcher_empty_dict(en_vocab):
"""Test matcher allows empty token specs, meaning match on any token."""
matcher = Matcher(en_vocab)
doc = Doc(matcher.vocab, words=["a", "b", "c"])
matcher.add("A.C", [[{"ORTH": "a"}, {}, {"ORTH": "c"}]])
matches = matcher(doc)
assert len(matches) == 1
assert matches[0][1:] == (0, 3)
matcher = Matcher(en_vocab)
matcher.add("A.", [[{"ORTH": "a"}, {}]])
matches = matcher(doc)
assert matches[0][1:] == (0, 2)
def test_matcher_operator_shadow(en_vocab):
matcher = Matcher(en_vocab)
doc = Doc(matcher.vocab, words=["a", "b", "c"])
pattern = [{"ORTH": "a"}, {"IS_ALPHA": True, "OP": "+"}, {"ORTH": "c"}]
matcher.add("A.C", [pattern])
matches = matcher(doc)
assert len(matches) == 1
assert matches[0][1:] == (0, 3)
def test_matcher_match_zero(matcher):
words1 = 'He said , " some words " ...'.split()
words2 = 'He said , " some three words " ...'.split()
pattern1 = [
{"ORTH": '"'},
{"OP": "!", "IS_PUNCT": True},
{"OP": "!", "IS_PUNCT": True},
{"ORTH": '"'},
]
pattern2 = [
{"ORTH": '"'},
{"IS_PUNCT": True},
{"IS_PUNCT": True},
{"IS_PUNCT": True},
{"ORTH": '"'},
]
matcher.add("Quote", [pattern1])
doc = Doc(matcher.vocab, words=words1)
assert len(matcher(doc)) == 1
doc = Doc(matcher.vocab, words=words2)
assert len(matcher(doc)) == 0
matcher.add("Quote", [pattern2])
assert len(matcher(doc)) == 0
def test_matcher_match_zero_plus(matcher):
words = 'He said , " some words " ...'.split()
pattern = [{"ORTH": '"'}, {"OP": "*", "IS_PUNCT": False}, {"ORTH": '"'}]
matcher = Matcher(matcher.vocab)
matcher.add("Quote", [pattern])
doc = Doc(matcher.vocab, words=words)
assert len(matcher(doc)) == 1
def test_matcher_match_one_plus(matcher):
control = Matcher(matcher.vocab)
control.add("BasicPhilippe", [[{"ORTH": "Philippe"}]])
doc = Doc(control.vocab, words=["Philippe", "Philippe"])
m = control(doc)
assert len(m) == 2
pattern = [{"ORTH": "Philippe"}, {"ORTH": "Philippe", "OP": "+"}]
matcher.add("KleenePhilippe", [pattern])
m = matcher(doc)
assert len(m) == 1
def test_matcher_any_token_operator(en_vocab):
"""Test that patterns with "any token" {} work with operators."""
matcher = Matcher(en_vocab)
matcher.add("TEST", [[{"ORTH": "test"}, {"OP": "*"}]])
doc = Doc(en_vocab, words=["test", "hello", "world"])
matches = [doc[start:end].text for _, start, end in matcher(doc)]
assert len(matches) == 3
assert matches[0] == "test"
assert matches[1] == "test hello"
assert matches[2] == "test hello world"
@pytest.mark.usefixtures("clean_underscore")
def test_matcher_extension_attribute(en_vocab):
matcher = Matcher(en_vocab)
get_is_fruit = lambda token: token.text in ("apple", "banana")
Token.set_extension("is_fruit", getter=get_is_fruit, force=True)
pattern = [{"ORTH": "an"}, {"_": {"is_fruit": True}}]
matcher.add("HAVING_FRUIT", [pattern])
doc = Doc(en_vocab, words=["an", "apple"])
matches = matcher(doc)
assert len(matches) == 1
doc = Doc(en_vocab, words=["an", "aardvark"])
matches = matcher(doc)
assert len(matches) == 0
def test_matcher_set_value(en_vocab):
matcher = Matcher(en_vocab)
pattern = [{"ORTH": {"IN": ["an", "a"]}}]
matcher.add("A_OR_AN", [pattern])
doc = Doc(en_vocab, words=["an", "a", "apple"])
matches = matcher(doc)
assert len(matches) == 2
doc = Doc(en_vocab, words=["aardvark"])
matches = matcher(doc)
assert len(matches) == 0
def test_matcher_set_value_operator(en_vocab):
matcher = Matcher(en_vocab)
pattern = [{"ORTH": {"IN": ["a", "the"]}, "OP": "?"}, {"ORTH": "house"}]
matcher.add("DET_HOUSE", [pattern])
doc = Doc(en_vocab, words=["In", "a", "house"])
matches = matcher(doc)
assert len(matches) == 2
doc = Doc(en_vocab, words=["my", "house"])
matches = matcher(doc)
assert len(matches) == 1
def test_matcher_subset_value_operator(en_vocab):
matcher = Matcher(en_vocab)
pattern = [{"MORPH": {"IS_SUBSET": ["Feat=Val", "Feat2=Val2"]}}]
matcher.add("M", [pattern])
doc = Doc(en_vocab, words=["a", "b", "c"])
assert len(matcher(doc)) == 3
doc[0].set_morph("Feat=Val")
assert len(matcher(doc)) == 3
doc[0].set_morph("Feat=Val|Feat2=Val2")
assert len(matcher(doc)) == 3
doc[0].set_morph("Feat=Val|Feat2=Val2|Feat3=Val3")
assert len(matcher(doc)) == 2
doc[0].set_morph("Feat=Val|Feat2=Val2|Feat3=Val3|Feat4=Val4")
assert len(matcher(doc)) == 2
# IS_SUBSET acts like "IN" for attrs other than MORPH
matcher = Matcher(en_vocab)
pattern = [{"TAG": {"IS_SUBSET": ["A", "B"]}}]
matcher.add("M", [pattern])
doc = Doc(en_vocab, words=["a", "b", "c"])
doc[0].tag_ = "A"
assert len(matcher(doc)) == 1
# IS_SUBSET with an empty list matches nothing
matcher = Matcher(en_vocab)
pattern = [{"TAG": {"IS_SUBSET": []}}]
matcher.add("M", [pattern])
doc = Doc(en_vocab, words=["a", "b", "c"])
doc[0].tag_ = "A"
assert len(matcher(doc)) == 0
# IS_SUBSET with a list value
Token.set_extension("ext", default=[])
matcher = Matcher(en_vocab)
pattern = [{"_": {"ext": {"IS_SUBSET": ["A", "B"]}}}]
matcher.add("M", [pattern])
doc = Doc(en_vocab, words=["a", "b", "c"])
doc[0]._.ext = ["A"]
doc[1]._.ext = ["C", "D"]
assert len(matcher(doc)) == 2
def test_matcher_superset_value_operator(en_vocab):
matcher = Matcher(en_vocab)
pattern = [{"MORPH": {"IS_SUPERSET": ["Feat=Val", "Feat2=Val2", "Feat3=Val3"]}}]
matcher.add("M", [pattern])
doc = Doc(en_vocab, words=["a", "b", "c"])
assert len(matcher(doc)) == 0
doc[0].set_morph("Feat=Val|Feat2=Val2")
assert len(matcher(doc)) == 0
doc[0].set_morph("Feat=Val|Feat2=Val2|Feat3=Val3")
assert len(matcher(doc)) == 1
doc[0].set_morph("Feat=Val|Feat2=Val2|Feat3=Val3|Feat4=Val4")
assert len(matcher(doc)) == 1
# IS_SUPERSET with more than one value only matches for MORPH
matcher = Matcher(en_vocab)
pattern = [{"TAG": {"IS_SUPERSET": ["A", "B"]}}]
matcher.add("M", [pattern])
doc = Doc(en_vocab, words=["a", "b", "c"])
doc[0].tag_ = "A"
assert len(matcher(doc)) == 0
# IS_SUPERSET with one value is the same as ==
matcher = Matcher(en_vocab)
pattern = [{"TAG": {"IS_SUPERSET": ["A"]}}]
matcher.add("M", [pattern])
doc = Doc(en_vocab, words=["a", "b", "c"])
doc[0].tag_ = "A"
assert len(matcher(doc)) == 1
# IS_SUPERSET with an empty value matches everything
matcher = Matcher(en_vocab)
pattern = [{"TAG": {"IS_SUPERSET": []}}]
matcher.add("M", [pattern])
doc = Doc(en_vocab, words=["a", "b", "c"])
doc[0].tag_ = "A"
assert len(matcher(doc)) == 3
# IS_SUPERSET with a list value
Token.set_extension("ext", default=[])
matcher = Matcher(en_vocab)
pattern = [{"_": {"ext": {"IS_SUPERSET": ["A"]}}}]
matcher.add("M", [pattern])
doc = Doc(en_vocab, words=["a", "b", "c"])
doc[0]._.ext = ["A", "B"]
assert len(matcher(doc)) == 1
def test_matcher_intersect_value_operator(en_vocab):
matcher = Matcher(en_vocab)
pattern = [{"MORPH": {"INTERSECTS": ["Feat=Val", "Feat2=Val2", "Feat3=Val3"]}}]
matcher.add("M", [pattern])
doc = Doc(en_vocab, words=["a", "b", "c"])
assert len(matcher(doc)) == 0
doc[0].set_morph("Feat=Val")
assert len(matcher(doc)) == 1
doc[0].set_morph("Feat=Val|Feat2=Val2")
assert len(matcher(doc)) == 1
doc[0].set_morph("Feat=Val|Feat2=Val2|Feat3=Val3")
assert len(matcher(doc)) == 1
doc[0].set_morph("Feat=Val|Feat2=Val2|Feat3=Val3|Feat4=Val4")
assert len(matcher(doc)) == 1
# INTERSECTS with a single value is the same as IN
matcher = Matcher(en_vocab)
pattern = [{"TAG": {"INTERSECTS": ["A", "B"]}}]
matcher.add("M", [pattern])
doc = Doc(en_vocab, words=["a", "b", "c"])
doc[0].tag_ = "A"
assert len(matcher(doc)) == 1
# INTERSECTS with an empty pattern list matches nothing
matcher = Matcher(en_vocab)
pattern = [{"TAG": {"INTERSECTS": []}}]
matcher.add("M", [pattern])
doc = Doc(en_vocab, words=["a", "b", "c"])
doc[0].tag_ = "A"
assert len(matcher(doc)) == 0
# INTERSECTS with a list value
Token.set_extension("ext", default=[])
matcher = Matcher(en_vocab)
pattern = [{"_": {"ext": {"INTERSECTS": ["A", "C"]}}}]
matcher.add("M", [pattern])
doc = Doc(en_vocab, words=["a", "b", "c"])
doc[0]._.ext = ["A", "B"]
assert len(matcher(doc)) == 1
# INTERSECTS matches nothing for iterables that aren't all str or int
matcher = Matcher(en_vocab)
pattern = [{"_": {"ext": {"INTERSECTS": ["Abx", "C"]}}}]
matcher.add("M", [pattern])
doc = Doc(en_vocab, words=["a", "b", "c"])
doc[0]._.ext = [["Abx"], "B"]
assert len(matcher(doc)) == 0
doc[0]._.ext = ["Abx", "B"]
assert len(matcher(doc)) == 1
# INTERSECTS with an empty pattern list matches nothing
matcher = Matcher(en_vocab)
pattern = [{"_": {"ext": {"INTERSECTS": []}}}]
matcher.add("M", [pattern])
doc = Doc(en_vocab, words=["a", "b", "c"])
doc[0]._.ext = ["A", "B"]
assert len(matcher(doc)) == 0
# INTERSECTS with an empty value matches nothing
matcher = Matcher(en_vocab)
pattern = [{"_": {"ext": {"INTERSECTS": ["A", "B"]}}}]
matcher.add("M", [pattern])
doc = Doc(en_vocab, words=["a", "b", "c"])
doc[0]._.ext = []
assert len(matcher(doc)) == 0
def test_matcher_morph_handling(en_vocab):
# order of features in pattern doesn't matter
matcher = Matcher(en_vocab)
pattern1 = [{"MORPH": {"IN": ["Feat1=Val1|Feat2=Val2"]}}]
pattern2 = [{"MORPH": {"IN": ["Feat2=Val2|Feat1=Val1"]}}]
matcher.add("M", [pattern1])
matcher.add("N", [pattern2])
doc = Doc(en_vocab, words=["a", "b", "c"])
assert len(matcher(doc)) == 0
doc[0].set_morph("Feat2=Val2|Feat1=Val1")
assert len(matcher(doc)) == 2
doc[0].set_morph("Feat1=Val1|Feat2=Val2")
assert len(matcher(doc)) == 2
# multiple values are split
matcher = Matcher(en_vocab)
pattern1 = [{"MORPH": {"IS_SUPERSET": ["Feat1=Val1", "Feat2=Val2"]}}]
pattern2 = [{"MORPH": {"IS_SUPERSET": ["Feat1=Val1", "Feat1=Val3", "Feat2=Val2"]}}]
matcher.add("M", [pattern1])
matcher.add("N", [pattern2])
doc = Doc(en_vocab, words=["a", "b", "c"])
assert len(matcher(doc)) == 0
doc[0].set_morph("Feat2=Val2,Val3|Feat1=Val1")
assert len(matcher(doc)) == 1
doc[0].set_morph("Feat1=Val1,Val3|Feat2=Val2")
assert len(matcher(doc)) == 2
def test_matcher_regex(en_vocab):
matcher = Matcher(en_vocab)
pattern = [{"ORTH": {"REGEX": r"(?:a|an)"}}]
matcher.add("A_OR_AN", [pattern])
doc = Doc(en_vocab, words=["an", "a", "hi"])
matches = matcher(doc)
assert len(matches) == 2
doc = Doc(en_vocab, words=["bye"])
matches = matcher(doc)
assert len(matches) == 0
def test_matcher_regex_set_in(en_vocab):
matcher = Matcher(en_vocab)
pattern = [{"ORTH": {"REGEX": {"IN": [r"(?:a)", r"(?:an)"]}}}]
matcher.add("A_OR_AN", [pattern])
doc = Doc(en_vocab, words=["an", "a", "hi"])
matches = matcher(doc)
assert len(matches) == 2
doc = Doc(en_vocab, words=["bye"])
matches = matcher(doc)
assert len(matches) == 0
def test_matcher_regex_set_not_in(en_vocab):
matcher = Matcher(en_vocab)
pattern = [{"ORTH": {"REGEX": {"NOT_IN": [r"(?:a)", r"(?:an)"]}}}]
matcher.add("A_OR_AN", [pattern])
doc = Doc(en_vocab, words=["an", "a", "hi"])
matches = matcher(doc)
assert len(matches) == 1
doc = Doc(en_vocab, words=["bye"])
matches = matcher(doc)
assert len(matches) == 1
def test_matcher_regex_shape(en_vocab):
matcher = Matcher(en_vocab)
pattern = [{"SHAPE": {"REGEX": r"^[^x]+$"}}]
matcher.add("NON_ALPHA", [pattern])
doc = Doc(en_vocab, words=["99", "problems", "!"])
matches = matcher(doc)
assert len(matches) == 2
doc = Doc(en_vocab, words=["bye"])
matches = matcher(doc)
assert len(matches) == 0
@pytest.mark.parametrize(
"cmp, bad",
[
("==", ["a", "aaa"]),
("!=", ["aa"]),
(">=", ["a"]),
("<=", ["aaa"]),
(">", ["a", "aa"]),
("<", ["aa", "aaa"]),
],
)
def test_matcher_compare_length(en_vocab, cmp, bad):
matcher = Matcher(en_vocab)
pattern = [{"LENGTH": {cmp: 2}}]
matcher.add("LENGTH_COMPARE", [pattern])
doc = Doc(en_vocab, words=["a", "aa", "aaa"])
matches = matcher(doc)
assert len(matches) == len(doc) - len(bad)
doc = Doc(en_vocab, words=bad)
matches = matcher(doc)
assert len(matches) == 0
def test_matcher_extension_set_membership(en_vocab):
matcher = Matcher(en_vocab)
get_reversed = lambda token: "".join(reversed(token.text))
Token.set_extension("reversed", getter=get_reversed, force=True)
pattern = [{"_": {"reversed": {"IN": ["eyb", "ih"]}}}]
matcher.add("REVERSED", [pattern])
doc = Doc(en_vocab, words=["hi", "bye", "hello"])
matches = matcher(doc)
assert len(matches) == 2
doc = Doc(en_vocab, words=["aardvark"])
matches = matcher(doc)
assert len(matches) == 0
def test_matcher_extension_in_set_predicate(en_vocab):
matcher = Matcher(en_vocab)
Token.set_extension("ext", default=[])
pattern = [{"_": {"ext": {"IN": ["A", "C"]}}}]
matcher.add("M", [pattern])
doc = Doc(en_vocab, words=["a", "b", "c"])
# The IN predicate expects an exact match between the
# extension value and one of the pattern's values.
doc[0]._.ext = ["A", "B"]
assert len(matcher(doc)) == 0
doc[0]._.ext = ["A"]
assert len(matcher(doc)) == 0
doc[0]._.ext = "A"
assert len(matcher(doc)) == 1
def test_matcher_basic_check(en_vocab):
matcher = Matcher(en_vocab)
# Potential mistake: pass in pattern instead of list of patterns
pattern = [{"TEXT": "hello"}, {"TEXT": "world"}]
with pytest.raises(ValueError):
matcher.add("TEST", pattern)
def test_attr_pipeline_checks(en_vocab):
doc1 = Doc(en_vocab, words=["Test"])
doc1[0].dep_ = "ROOT"
doc2 = Doc(en_vocab, words=["Test"])
doc2[0].tag_ = "TAG"
doc2[0].pos_ = "X"
doc2[0].set_morph("Feat=Val")
doc2[0].lemma_ = "LEMMA"
doc3 = Doc(en_vocab, words=["Test"])
# DEP requires DEP
matcher = Matcher(en_vocab)
matcher.add("TEST", [[{"DEP": "a"}]])
matcher(doc1)
with pytest.raises(ValueError):
matcher(doc2)
with pytest.raises(ValueError):
matcher(doc3)
# errors can be suppressed if desired
matcher(doc2, allow_missing=True)
matcher(doc3, allow_missing=True)
# TAG, POS, LEMMA require those values
for attr in ("TAG", "POS", "LEMMA"):
matcher = Matcher(en_vocab)
matcher.add("TEST", [[{attr: "a"}]])
matcher(doc2)
with pytest.raises(ValueError):
matcher(doc1)
with pytest.raises(ValueError):
matcher(doc3)
# TEXT/ORTH only require tokens
matcher = Matcher(en_vocab)
matcher.add("TEST", [[{"ORTH": "a"}]])
matcher(doc1)
matcher(doc2)
matcher(doc3)
matcher = Matcher(en_vocab)
matcher.add("TEST", [[{"TEXT": "a"}]])
matcher(doc1)
matcher(doc2)
matcher(doc3)
@pytest.mark.parametrize(
"pattern,text",
[
([{"IS_ALPHA": True}], "a"),
([{"IS_ASCII": True}], "a"),
([{"IS_DIGIT": True}], "1"),
([{"IS_LOWER": True}], "a"),
([{"IS_UPPER": True}], "A"),
([{"IS_TITLE": True}], "Aaaa"),
([{"IS_PUNCT": True}], "."),
([{"IS_SPACE": True}], "\n"),
([{"IS_BRACKET": True}], "["),
([{"IS_QUOTE": True}], '"'),
([{"IS_LEFT_PUNCT": True}], "``"),
([{"IS_RIGHT_PUNCT": True}], "''"),
([{"IS_STOP": True}], "the"),
([{"SPACY": True}], "the"),
([{"LIKE_NUM": True}], "1"),
([{"LIKE_URL": True}], "http://example.com"),
([{"LIKE_EMAIL": True}], "mail@example.com"),
],
)
def test_matcher_schema_token_attributes(en_vocab, pattern, text):
matcher = Matcher(en_vocab)
doc = Doc(en_vocab, words=text.split(" "))
matcher.add("Rule", [pattern])
assert len(matcher) == 1
matches = matcher(doc)
assert len(matches) == 1
@pytest.mark.filterwarnings("ignore:\\[W036")
def test_matcher_valid_callback(en_vocab):
"""Test that on_match can only be None or callable."""
matcher = Matcher(en_vocab)
with pytest.raises(ValueError):
matcher.add("TEST", [[{"TEXT": "test"}]], on_match=[])
matcher(Doc(en_vocab, words=["test"]))
def test_matcher_callback(en_vocab):
mock = Mock()
matcher = Matcher(en_vocab)
pattern = [{"ORTH": "test"}]
matcher.add("Rule", [pattern], on_match=mock)
doc = Doc(en_vocab, words=["This", "is", "a", "test", "."])
matches = matcher(doc)
mock.assert_called_once_with(matcher, doc, 0, matches)
def test_matcher_callback_with_alignments(en_vocab):
mock = Mock()
matcher = Matcher(en_vocab)
pattern = [{"ORTH": "test"}]
matcher.add("Rule", [pattern], on_match=mock)
doc = Doc(en_vocab, words=["This", "is", "a", "test", "."])
matches = matcher(doc, with_alignments=True)
mock.assert_called_once_with(matcher, doc, 0, matches)
def test_matcher_span(matcher):
text = "JavaScript is good but Java is better"
doc = Doc(matcher.vocab, words=text.split())
span_js = doc[:3]
span_java = doc[4:]
doc_matches = matcher(doc)
span_js_matches = matcher(span_js)
span_java_matches = matcher(span_java)
assert len(doc_matches) == 2
assert len(span_js_matches) == 1
assert len(span_java_matches) == 1
# match offsets always refer to the doc
assert doc_matches[0] == span_js_matches[0]
assert doc_matches[1] == span_java_matches[0]
def test_matcher_as_spans(matcher):
"""Test the new as_spans=True API."""
text = "JavaScript is good but Java is better"
doc = Doc(matcher.vocab, words=text.split())
matches = matcher(doc, as_spans=True)
assert len(matches) == 2
assert isinstance(matches[0], Span)
assert matches[0].text == "JavaScript"
assert matches[0].label_ == "JS"
assert isinstance(matches[1], Span)
assert matches[1].text == "Java"
assert matches[1].label_ == "Java"
matches = matcher(doc[1:], as_spans=True)
assert len(matches) == 1
assert isinstance(matches[0], Span)
assert matches[0].text == "Java"
assert matches[0].label_ == "Java"
def test_matcher_deprecated(matcher):
doc = Doc(matcher.vocab, words=["hello", "world"])
with pytest.warns(DeprecationWarning) as record:
for _ in matcher.pipe([doc]):
pass
assert record.list
assert "spaCy v3.0" in str(record.list[0].message)
def test_matcher_remove_zero_operator(en_vocab):
matcher = Matcher(en_vocab)
pattern = [{"OP": "!"}]
matcher.add("Rule", [pattern])
doc = Doc(en_vocab, words=["This", "is", "a", "test", "."])
matches = matcher(doc)
assert len(matches) == 0
assert "Rule" in matcher
matcher.remove("Rule")
assert "Rule" not in matcher
def test_matcher_no_zero_length(en_vocab):
doc = Doc(en_vocab, words=["a", "b"], tags=["A", "B"])
matcher = Matcher(en_vocab)
matcher.add("TEST", [[{"TAG": "C", "OP": "?"}]])
assert len(matcher(doc)) == 0
def test_matcher_ent_iob_key(en_vocab):
"""Test that patterns with ent_iob works correctly."""
matcher = Matcher(en_vocab)
matcher.add("Rule", [[{"ENT_IOB": "I"}]])
doc1 = Doc(en_vocab, words=["I", "visited", "New", "York", "and", "California"])
doc1.ents = [Span(doc1, 2, 4, label="GPE"), Span(doc1, 5, 6, label="GPE")]
doc2 = Doc(en_vocab, words=["I", "visited", "my", "friend", "Alicia"])
doc2.ents = [Span(doc2, 4, 5, label="PERSON")]
matches1 = [doc1[start:end].text for _, start, end in matcher(doc1)]
matches2 = [doc2[start:end].text for _, start, end in matcher(doc2)]
assert len(matches1) == 1
assert matches1[0] == "York"
assert len(matches2) == 0
matcher = Matcher(en_vocab) # Test iob pattern with operators
matcher.add("Rule", [[{"ENT_IOB": "I", "OP": "+"}]])
doc = Doc(
en_vocab, words=["I", "visited", "my", "friend", "Anna", "Maria", "Esperanza"]
)
doc.ents = [Span(doc, 4, 7, label="PERSON")]
matches = [doc[start:end].text for _, start, end in matcher(doc)]
assert len(matches) == 3
assert matches[0] == "Maria"
assert matches[1] == "Maria Esperanza"
assert matches[2] == "Esperanza"
def test_matcher_min_max_operator(en_vocab):
# Exactly n matches {n}
doc = Doc(
en_vocab,
words=["foo", "bar", "foo", "foo", "bar", "foo", "foo", "foo", "bar", "bar"],
)
matcher = Matcher(en_vocab)
pattern = [{"ORTH": "foo", "OP": "{3}"}]
matcher.add("TEST", [pattern])
matches1 = [doc[start:end].text for _, start, end in matcher(doc)]
assert len(matches1) == 1
# At least n matches {n,}
matcher = Matcher(en_vocab)
pattern = [{"ORTH": "foo", "OP": "{2,}"}]
matcher.add("TEST", [pattern])
matches2 = [doc[start:end].text for _, start, end in matcher(doc)]
assert len(matches2) == 4
# At most m matches {,m}
matcher = Matcher(en_vocab)
pattern = [{"ORTH": "foo", "OP": "{,2}"}]
matcher.add("TEST", [pattern])
matches3 = [doc[start:end].text for _, start, end in matcher(doc)]
assert len(matches3) == 9
# At least n matches and most m matches {n,m}
matcher = Matcher(en_vocab)
pattern = [{"ORTH": "foo", "OP": "{2,3}"}]
matcher.add("TEST", [pattern])
matches4 = [doc[start:end].text for _, start, end in matcher(doc)]
assert len(matches4) == 4