mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 18:56:36 +03:00
a9c6104047
* Add work in progress * Update analysis helpers and component decorator * Fix porting of docstrings for Python 2 * Fix docstring stuff on Python 2 * Support meta factories when loading model * Put auto pipeline analysis behind flag for now * Analyse pipes on remove_pipe and replace_pipe * Move analysis to root for now Try to find a better place for it, but it needs to go for now to avoid circular imports * Simplify decorator Don't return a wrapped class and instead just write to the object * Update existing components and factories * Add condition in factory for classes vs. functions * Add missing from_nlp classmethods * Add "retokenizes" to printed overview * Update assigns/requires declarations of builtins * Only return data if no_print is enabled * Use multiline table for overview * Don't support Span * Rewrite errors/warnings and move them to spacy.errors
147 lines
4.5 KiB
Python
147 lines
4.5 KiB
Python
# coding: utf8
|
|
from __future__ import unicode_literals
|
|
|
|
import spacy.language
|
|
from spacy.language import Language, component
|
|
from spacy.analysis import print_summary, validate_attrs
|
|
from spacy.analysis import get_assigns_for_attr, get_requires_for_attr
|
|
from spacy.compat import is_python2
|
|
from mock import Mock, ANY
|
|
import pytest
|
|
|
|
|
|
def test_component_decorator_function():
|
|
@component(name="test")
|
|
def test_component(doc):
|
|
"""docstring"""
|
|
return doc
|
|
|
|
assert test_component.name == "test"
|
|
if not is_python2:
|
|
assert test_component.__doc__ == "docstring"
|
|
assert test_component("foo") == "foo"
|
|
|
|
|
|
def test_component_decorator_class():
|
|
@component(name="test")
|
|
class TestComponent(object):
|
|
"""docstring1"""
|
|
|
|
foo = "bar"
|
|
|
|
def __call__(self, doc):
|
|
"""docstring2"""
|
|
return doc
|
|
|
|
def custom(self, x):
|
|
"""docstring3"""
|
|
return x
|
|
|
|
assert TestComponent.name == "test"
|
|
assert TestComponent.foo == "bar"
|
|
assert hasattr(TestComponent, "custom")
|
|
test_component = TestComponent()
|
|
assert test_component.foo == "bar"
|
|
assert test_component("foo") == "foo"
|
|
assert hasattr(test_component, "custom")
|
|
assert test_component.custom("bar") == "bar"
|
|
if not is_python2:
|
|
assert TestComponent.__doc__ == "docstring1"
|
|
assert TestComponent.__call__.__doc__ == "docstring2"
|
|
assert TestComponent.custom.__doc__ == "docstring3"
|
|
assert test_component.__doc__ == "docstring1"
|
|
assert test_component.__call__.__doc__ == "docstring2"
|
|
assert test_component.custom.__doc__ == "docstring3"
|
|
|
|
|
|
def test_component_decorator_assigns():
|
|
spacy.language.ENABLE_PIPELINE_ANALYSIS = True
|
|
|
|
@component("c1", assigns=["token.tag", "doc.tensor"])
|
|
def test_component1(doc):
|
|
return doc
|
|
|
|
@component(
|
|
"c2", requires=["token.tag", "token.pos"], assigns=["token.lemma", "doc.tensor"]
|
|
)
|
|
def test_component2(doc):
|
|
return doc
|
|
|
|
@component("c3", requires=["token.lemma"], assigns=["token._.custom_lemma"])
|
|
def test_component3(doc):
|
|
return doc
|
|
|
|
assert "c1" in Language.factories
|
|
assert "c2" in Language.factories
|
|
assert "c3" in Language.factories
|
|
|
|
nlp = Language()
|
|
nlp.add_pipe(test_component1)
|
|
with pytest.warns(UserWarning):
|
|
nlp.add_pipe(test_component2)
|
|
nlp.add_pipe(test_component3)
|
|
assigns_tensor = get_assigns_for_attr(nlp.pipeline, "doc.tensor")
|
|
assert [name for name, _ in assigns_tensor] == ["c1", "c2"]
|
|
test_component4 = nlp.create_pipe("c1")
|
|
assert test_component4.name == "c1"
|
|
assert test_component4.factory == "c1"
|
|
nlp.add_pipe(test_component4, name="c4")
|
|
assert nlp.pipe_names == ["c1", "c2", "c3", "c4"]
|
|
assert "c4" not in Language.factories
|
|
assert nlp.pipe_factories["c1"] == "c1"
|
|
assert nlp.pipe_factories["c4"] == "c1"
|
|
assigns_tensor = get_assigns_for_attr(nlp.pipeline, "doc.tensor")
|
|
assert [name for name, _ in assigns_tensor] == ["c1", "c2", "c4"]
|
|
requires_pos = get_requires_for_attr(nlp.pipeline, "token.pos")
|
|
assert [name for name, _ in requires_pos] == ["c2"]
|
|
assert print_summary(nlp, no_print=True)
|
|
assert nlp("hello world")
|
|
|
|
|
|
def test_component_factories_from_nlp():
|
|
"""Test that class components can implement a from_nlp classmethod that
|
|
gives them access to the nlp object and config via the factory."""
|
|
|
|
class TestComponent5(object):
|
|
def __call__(self, doc):
|
|
return doc
|
|
|
|
mock = Mock()
|
|
mock.return_value = TestComponent5()
|
|
TestComponent5.from_nlp = classmethod(mock)
|
|
TestComponent5 = component("c5")(TestComponent5)
|
|
|
|
assert "c5" in Language.factories
|
|
nlp = Language()
|
|
pipe = nlp.create_pipe("c5", config={"foo": "bar"})
|
|
nlp.add_pipe(pipe)
|
|
assert nlp("hello world")
|
|
# The first argument here is the class itself, so we're accepting any here
|
|
mock.assert_called_once_with(ANY, nlp, foo="bar")
|
|
|
|
|
|
def test_analysis_validate_attrs_valid():
|
|
attrs = ["doc.sents", "doc.ents", "token.tag", "token._.xyz"]
|
|
assert validate_attrs(attrs)
|
|
for attr in attrs:
|
|
assert validate_attrs([attr])
|
|
with pytest.raises(ValueError):
|
|
validate_attrs(["doc.sents", "doc.xyz"])
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"attr",
|
|
[
|
|
"doc",
|
|
"doc_ents",
|
|
"doc.xyz",
|
|
"token.xyz",
|
|
"token.tag_",
|
|
"token.tag.xyz",
|
|
"token._.xyz.abc",
|
|
],
|
|
)
|
|
def test_analysis_validate_attrs_invalid(attr):
|
|
with pytest.raises(ValueError):
|
|
validate_attrs([attr])
|