mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			200 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			200 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from itertools import islice
 | 
						|
from typing import Iterable, Optional, Dict, List, Callable, Any
 | 
						|
 | 
						|
from thinc.api import Model, Config
 | 
						|
from thinc.types import Floats2d
 | 
						|
 | 
						|
from ..language import Language
 | 
						|
from ..training import Example, validate_get_examples
 | 
						|
from ..errors import Errors
 | 
						|
from ..scorer import Scorer
 | 
						|
from ..tokens import Doc
 | 
						|
from ..util import registry
 | 
						|
from ..vocab import Vocab
 | 
						|
from .textcat import TextCategorizer
 | 
						|
 | 
						|
 | 
						|
multi_label_default_config = """
 | 
						|
[model]
 | 
						|
@architectures = "spacy.TextCatEnsemble.v2"
 | 
						|
 | 
						|
[model.tok2vec]
 | 
						|
@architectures = "spacy.Tok2Vec.v1"
 | 
						|
 | 
						|
[model.tok2vec.embed]
 | 
						|
@architectures = "spacy.MultiHashEmbed.v2"
 | 
						|
width = 64
 | 
						|
rows = [2000, 2000, 1000, 1000, 1000, 1000]
 | 
						|
attrs = ["ORTH", "LOWER", "PREFIX", "SUFFIX", "SHAPE", "ID"]
 | 
						|
include_static_vectors = false
 | 
						|
 | 
						|
[model.tok2vec.encode]
 | 
						|
@architectures = "spacy.MaxoutWindowEncoder.v1"
 | 
						|
width = ${model.tok2vec.embed.width}
 | 
						|
window_size = 1
 | 
						|
maxout_pieces = 3
 | 
						|
depth = 2
 | 
						|
 | 
						|
[model.linear_model]
 | 
						|
@architectures = "spacy.TextCatBOW.v2"
 | 
						|
exclusive_classes = false
 | 
						|
ngram_size = 1
 | 
						|
no_output_layer = false
 | 
						|
"""
 | 
						|
DEFAULT_MULTI_TEXTCAT_MODEL = Config().from_str(multi_label_default_config)["model"]
 | 
						|
 | 
						|
multi_label_bow_config = """
 | 
						|
[model]
 | 
						|
@architectures = "spacy.TextCatBOW.v2"
 | 
						|
exclusive_classes = false
 | 
						|
ngram_size = 1
 | 
						|
no_output_layer = false
 | 
						|
"""
 | 
						|
 | 
						|
multi_label_cnn_config = """
 | 
						|
[model]
 | 
						|
@architectures = "spacy.TextCatCNN.v2"
 | 
						|
exclusive_classes = false
 | 
						|
 | 
						|
[model.tok2vec]
 | 
						|
@architectures = "spacy.HashEmbedCNN.v2"
 | 
						|
pretrained_vectors = null
 | 
						|
width = 96
 | 
						|
depth = 4
 | 
						|
embed_size = 2000
 | 
						|
window_size = 1
 | 
						|
maxout_pieces = 3
 | 
						|
subword_features = true
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
@Language.factory(
 | 
						|
    "textcat_multilabel",
 | 
						|
    assigns=["doc.cats"],
 | 
						|
    default_config={
 | 
						|
        "threshold": 0.5,
 | 
						|
        "model": DEFAULT_MULTI_TEXTCAT_MODEL,
 | 
						|
        "scorer": {"@scorers": "spacy.textcat_multilabel_scorer.v1"},
 | 
						|
    },
 | 
						|
    default_score_weights={
 | 
						|
        "cats_score": 1.0,
 | 
						|
        "cats_score_desc": None,
 | 
						|
        "cats_micro_p": None,
 | 
						|
        "cats_micro_r": None,
 | 
						|
        "cats_micro_f": None,
 | 
						|
        "cats_macro_p": None,
 | 
						|
        "cats_macro_r": None,
 | 
						|
        "cats_macro_f": None,
 | 
						|
        "cats_macro_auc": None,
 | 
						|
        "cats_f_per_type": None,
 | 
						|
        "cats_macro_auc_per_type": None,
 | 
						|
    },
 | 
						|
)
 | 
						|
def make_multilabel_textcat(
 | 
						|
    nlp: Language,
 | 
						|
    name: str,
 | 
						|
    model: Model[List[Doc], List[Floats2d]],
 | 
						|
    threshold: float,
 | 
						|
    scorer: Optional[Callable],
 | 
						|
) -> "TextCategorizer":
 | 
						|
    """Create a TextCategorizer component. The text categorizer predicts categories
 | 
						|
    over a whole document. It can learn one or more labels, and the labels are considered
 | 
						|
    to be non-mutually exclusive, which means that there can be zero or more labels
 | 
						|
    per doc).
 | 
						|
 | 
						|
    model (Model[List[Doc], List[Floats2d]]): A model instance that predicts
 | 
						|
        scores for each category.
 | 
						|
    threshold (float): Cutoff to consider a prediction "positive".
 | 
						|
    """
 | 
						|
    return MultiLabel_TextCategorizer(
 | 
						|
        nlp.vocab, model, name, threshold=threshold, scorer=scorer
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def textcat_multilabel_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
 | 
						|
    return Scorer.score_cats(
 | 
						|
        examples,
 | 
						|
        "cats",
 | 
						|
        multi_label=True,
 | 
						|
        **kwargs,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
@registry.scorers("spacy.textcat_multilabel_scorer.v1")
 | 
						|
def make_textcat_multilabel_scorer():
 | 
						|
    return textcat_multilabel_score
 | 
						|
 | 
						|
 | 
						|
class MultiLabel_TextCategorizer(TextCategorizer):
 | 
						|
    """Pipeline component for multi-label text classification.
 | 
						|
 | 
						|
    DOCS: https://spacy.io/api/textcategorizer
 | 
						|
    """
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        vocab: Vocab,
 | 
						|
        model: Model,
 | 
						|
        name: str = "textcat_multilabel",
 | 
						|
        *,
 | 
						|
        threshold: float,
 | 
						|
        scorer: Optional[Callable] = textcat_multilabel_score,
 | 
						|
    ) -> None:
 | 
						|
        """Initialize a text categorizer for multi-label classification.
 | 
						|
 | 
						|
        vocab (Vocab): The shared vocabulary.
 | 
						|
        model (thinc.api.Model): The Thinc Model powering the pipeline component.
 | 
						|
        name (str): The component instance name, used to add entries to the
 | 
						|
            losses during training.
 | 
						|
        threshold (float): Cutoff to consider a prediction "positive".
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/textcategorizer#init
 | 
						|
        """
 | 
						|
        self.vocab = vocab
 | 
						|
        self.model = model
 | 
						|
        self.name = name
 | 
						|
        self._rehearsal_model = None
 | 
						|
        cfg = {"labels": [], "threshold": threshold}
 | 
						|
        self.cfg = dict(cfg)
 | 
						|
        self.scorer = scorer
 | 
						|
 | 
						|
    def initialize(  # type: ignore[override]
 | 
						|
        self,
 | 
						|
        get_examples: Callable[[], Iterable[Example]],
 | 
						|
        *,
 | 
						|
        nlp: Optional[Language] = None,
 | 
						|
        labels: Optional[Iterable[str]] = None,
 | 
						|
    ):
 | 
						|
        """Initialize the pipe for training, using a representative set
 | 
						|
        of data examples.
 | 
						|
 | 
						|
        get_examples (Callable[[], Iterable[Example]]): Function that
 | 
						|
            returns a representative sample of gold-standard Example objects.
 | 
						|
        nlp (Language): The current nlp object the component is part of.
 | 
						|
        labels: The labels to add to the component, typically generated by the
 | 
						|
            `init labels` command. If no labels are provided, the get_examples
 | 
						|
            callback is used to extract the labels from the data.
 | 
						|
 | 
						|
        DOCS: https://spacy.io/api/textcategorizer#initialize
 | 
						|
        """
 | 
						|
        validate_get_examples(get_examples, "MultiLabel_TextCategorizer.initialize")
 | 
						|
        if labels is None:
 | 
						|
            for example in get_examples():
 | 
						|
                for cat in example.y.cats:
 | 
						|
                    self.add_label(cat)
 | 
						|
        else:
 | 
						|
            for label in labels:
 | 
						|
                self.add_label(label)
 | 
						|
        subbatch = list(islice(get_examples(), 10))
 | 
						|
        doc_sample = [eg.reference for eg in subbatch]
 | 
						|
        label_sample, _ = self._examples_to_truth(subbatch)
 | 
						|
        self._require_labels()
 | 
						|
        assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
 | 
						|
        assert len(label_sample) > 0, Errors.E923.format(name=self.name)
 | 
						|
        self.model.initialize(X=doc_sample, Y=label_sample)
 | 
						|
 | 
						|
    def _validate_categories(self, examples: Iterable[Example]):
 | 
						|
        """This component allows any type of single- or multi-label annotations.
 | 
						|
        This method overwrites the more strict one from 'textcat'."""
 | 
						|
        pass
 |