mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			62 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			62 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""Example of adding a pipeline component to prohibit sentence boundaries
 | 
						|
before certain tokens.
 | 
						|
 | 
						|
What we do is write to the token.is_sent_start attribute, which
 | 
						|
takes values in {True, False, None}. The default value None allows the parser
 | 
						|
to predict sentence segments. The value False prohibits the parser from inserting
 | 
						|
a sentence boundary before that token. Note that fixing the sentence segmentation
 | 
						|
should also improve the parse quality.
 | 
						|
 | 
						|
The specific example here is drawn from https://github.com/explosion/spaCy/issues/2627
 | 
						|
Other versions of the model may not make the original mistake, so the specific
 | 
						|
example might not be apt for future versions.
 | 
						|
 | 
						|
Compatible with: spaCy v2.0.0+
 | 
						|
Last tested with: v2.1.0
 | 
						|
"""
 | 
						|
import plac
 | 
						|
import spacy
 | 
						|
 | 
						|
 | 
						|
def prevent_sentence_boundaries(doc):
 | 
						|
    for token in doc:
 | 
						|
        if not can_be_sentence_start(token):
 | 
						|
            token.is_sent_start = False
 | 
						|
    return doc
 | 
						|
 | 
						|
 | 
						|
def can_be_sentence_start(token):
 | 
						|
    if token.i == 0:
 | 
						|
        return True
 | 
						|
    # We're not checking for is_title here to ignore arbitrary titlecased
 | 
						|
    # tokens within sentences
 | 
						|
    # elif token.is_title:
 | 
						|
    #    return True
 | 
						|
    elif token.nbor(-1).is_punct:
 | 
						|
        return True
 | 
						|
    elif token.nbor(-1).is_space:
 | 
						|
        return True
 | 
						|
    else:
 | 
						|
        return False
 | 
						|
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    text=("The raw text to process", "positional", None, str),
 | 
						|
    spacy_model=("spaCy model to use (with a parser)", "option", "m", str),
 | 
						|
)
 | 
						|
def main(text="Been here And I'm loving it.", spacy_model="en_core_web_lg"):
 | 
						|
    print("Using spaCy model '{}'".format(spacy_model))
 | 
						|
    print("Processing text '{}'".format(text))
 | 
						|
    nlp = spacy.load(spacy_model)
 | 
						|
    doc = nlp(text)
 | 
						|
    sentences = [sent.text.strip() for sent in doc.sents]
 | 
						|
    print("Before:", sentences)
 | 
						|
    nlp.add_pipe(prevent_sentence_boundaries, before="parser")
 | 
						|
    doc = nlp(text)
 | 
						|
    sentences = [sent.text.strip() for sent in doc.sents]
 | 
						|
    print("After:", sentences)
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    plac.call(main)
 |