mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	Otherwise, the default saved model won't know that it's supposed to create spaCy's 'parser'.
		
			
				
	
	
		
			148 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			148 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#!/usr/bin/env python
 | 
						||
# coding: utf-8
 | 
						||
"""Using the parser to recognise your own semantics
 | 
						||
 | 
						||
spaCy's parser component can be used to trained to predict any type of tree
 | 
						||
structure over your input text. You can also predict trees over whole documents
 | 
						||
or chat logs, with connections between the sentence-roots used to annotate
 | 
						||
discourse structure. In this example, we'll build a message parser for a common
 | 
						||
"chat intent": finding local businesses. Our message semantics will have the
 | 
						||
following types of relations: ROOT, PLACE, QUALITY, ATTRIBUTE, TIME, LOCATION.
 | 
						||
 | 
						||
"show me the best hotel in berlin"
 | 
						||
('show', 'ROOT', 'show')
 | 
						||
('best', 'QUALITY', 'hotel') --> hotel with QUALITY best
 | 
						||
('hotel', 'PLACE', 'show') --> show PLACE hotel
 | 
						||
('berlin', 'LOCATION', 'hotel') --> hotel with LOCATION berlin
 | 
						||
 | 
						||
Compatible with: spaCy v2.0.0+
 | 
						||
"""
 | 
						||
from __future__ import unicode_literals, print_function
 | 
						||
 | 
						||
import plac
 | 
						||
import random
 | 
						||
import spacy
 | 
						||
from pathlib import Path
 | 
						||
 | 
						||
 | 
						||
# training data: texts, heads and dependency labels
 | 
						||
# for no relation, we simply chose an arbitrary dependency label, e.g. '-'
 | 
						||
TRAIN_DATA = [
 | 
						||
    ("find a cafe with great wifi", {
 | 
						||
        'heads': [0, 2, 0, 5, 5, 2],  # index of token head
 | 
						||
        'deps': ['ROOT', '-', 'PLACE', '-', 'QUALITY', 'ATTRIBUTE']
 | 
						||
    }),
 | 
						||
    ("find a hotel near the beach", {
 | 
						||
        'heads': [0, 2, 0, 5, 5, 2],
 | 
						||
        'deps': ['ROOT', '-', 'PLACE', 'QUALITY', '-', 'ATTRIBUTE']
 | 
						||
    }),
 | 
						||
    ("find me the closest gym that's open late", {
 | 
						||
        'heads': [0, 0, 4, 4, 0, 6, 4, 6, 6],
 | 
						||
        'deps': ['ROOT', '-', '-', 'QUALITY', 'PLACE', '-', '-', 'ATTRIBUTE', 'TIME']
 | 
						||
    }),
 | 
						||
    ("show me the cheapest store that sells flowers", {
 | 
						||
        'heads': [0, 0, 4, 4, 0, 4, 4, 4],  # attach "flowers" to store!
 | 
						||
        'deps': ['ROOT', '-', '-', 'QUALITY', 'PLACE', '-', '-', 'PRODUCT']
 | 
						||
    }),
 | 
						||
    ("find a nice restaurant in london", {
 | 
						||
        'heads': [0, 3, 3, 0, 3, 3],
 | 
						||
        'deps': ['ROOT', '-', 'QUALITY', 'PLACE', '-', 'LOCATION']
 | 
						||
    }),
 | 
						||
    ("show me the coolest hostel in berlin", {
 | 
						||
        'heads': [0, 0, 4, 4, 0, 4, 4],
 | 
						||
        'deps': ['ROOT', '-', '-', 'QUALITY', 'PLACE', '-', 'LOCATION']
 | 
						||
    }),
 | 
						||
    ("find a good italian restaurant near work", {
 | 
						||
        'heads': [0, 4, 4, 4, 0, 4, 5],
 | 
						||
        'deps': ['ROOT', '-', 'QUALITY', 'ATTRIBUTE', 'PLACE', 'ATTRIBUTE', 'LOCATION']
 | 
						||
    })
 | 
						||
]
 | 
						||
 | 
						||
 | 
						||
@plac.annotations(
 | 
						||
    model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
 | 
						||
    output_dir=("Optional output directory", "option", "o", Path),
 | 
						||
    n_iter=("Number of training iterations", "option", "n", int))
 | 
						||
def main(model=None, output_dir=None, n_iter=5):
 | 
						||
    """Load the model, set up the pipeline and train the parser."""
 | 
						||
    if model is not None:
 | 
						||
        nlp = spacy.load(model)  # load existing spaCy model
 | 
						||
        print("Loaded model '%s'" % model)
 | 
						||
    else:
 | 
						||
        nlp = spacy.blank('en')  # create blank Language class
 | 
						||
        print("Created blank 'en' model")
 | 
						||
 | 
						||
    # We'll use the built-in dependency parser class, but we want to create a
 | 
						||
    # fresh instance – just in case.
 | 
						||
    if 'parser' in nlp.pipe_names:
 | 
						||
        nlp.remove_pipe('parser')
 | 
						||
    parser = nlp.create_pipe('parser')
 | 
						||
    nlp.add_pipe(parser, first=True)
 | 
						||
 | 
						||
    for text, annotations in TRAIN_DATA:
 | 
						||
        for dep in annotations.get('deps', []):
 | 
						||
            parser.add_label(dep)
 | 
						||
 | 
						||
    other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'parser']
 | 
						||
    with nlp.disable_pipes(*other_pipes):  # only train parser
 | 
						||
        optimizer = nlp.begin_training()
 | 
						||
        for itn in range(n_iter):
 | 
						||
            random.shuffle(TRAIN_DATA)
 | 
						||
            losses = {}
 | 
						||
            for text, annotations in TRAIN_DATA:
 | 
						||
                nlp.update([text], [annotations], sgd=optimizer, losses=losses)
 | 
						||
            print(losses)
 | 
						||
 | 
						||
    # test the trained model
 | 
						||
    test_model(nlp)
 | 
						||
 | 
						||
    # save model to output directory
 | 
						||
    if output_dir is not None:
 | 
						||
        output_dir = Path(output_dir)
 | 
						||
        if not output_dir.exists():
 | 
						||
            output_dir.mkdir()
 | 
						||
        nlp.to_disk(output_dir)
 | 
						||
        print("Saved model to", output_dir)
 | 
						||
 | 
						||
        # test the saved model
 | 
						||
        print("Loading from", output_dir)
 | 
						||
        nlp2 = spacy.load(output_dir)
 | 
						||
        test_model(nlp2)
 | 
						||
 | 
						||
 | 
						||
def test_model(nlp):
 | 
						||
    texts = ["find a hotel with good wifi",
 | 
						||
             "find me the cheapest gym near work",
 | 
						||
             "show me the best hotel in berlin"]
 | 
						||
    docs = nlp.pipe(texts)
 | 
						||
    for doc in docs:
 | 
						||
        print(doc.text)
 | 
						||
        print([(t.text, t.dep_, t.head.text) for t in doc if t.dep_ != '-'])
 | 
						||
 | 
						||
 | 
						||
if __name__ == '__main__':
 | 
						||
    plac.call(main)
 | 
						||
 | 
						||
    # Expected output:
 | 
						||
    # find a hotel with good wifi
 | 
						||
    # [
 | 
						||
    #   ('find', 'ROOT', 'find'),
 | 
						||
    #   ('hotel', 'PLACE', 'find'),
 | 
						||
    #   ('good', 'QUALITY', 'wifi'),
 | 
						||
    #   ('wifi', 'ATTRIBUTE', 'hotel')
 | 
						||
    # ]
 | 
						||
    # find me the cheapest gym near work
 | 
						||
    # [
 | 
						||
    #   ('find', 'ROOT', 'find'),
 | 
						||
    #   ('cheapest', 'QUALITY', 'gym'),
 | 
						||
    #   ('gym', 'PLACE', 'find')
 | 
						||
    #   ('work', 'LOCATION', 'near')
 | 
						||
    # ]
 | 
						||
    # show me the best hotel in berlin
 | 
						||
    # [
 | 
						||
    #   ('show', 'ROOT', 'show'),
 | 
						||
    #   ('best', 'QUALITY', 'hotel'),
 | 
						||
    #   ('hotel', 'PLACE', 'show'),
 | 
						||
    #   ('berlin', 'LOCATION', 'hotel')
 | 
						||
    # ]
 |