mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			62 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			62 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
import numpy
 | 
						|
import srsly
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.strings import StringStore
 | 
						|
from spacy.tokens import Doc
 | 
						|
from spacy.vocab import Vocab
 | 
						|
from spacy.attrs import NORM
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("text1,text2", [("hello", "bye")])
 | 
						|
def test_pickle_string_store(text1, text2):
 | 
						|
    stringstore = StringStore()
 | 
						|
    store1 = stringstore[text1]
 | 
						|
    store2 = stringstore[text2]
 | 
						|
    data = srsly.pickle_dumps(stringstore, protocol=-1)
 | 
						|
    unpickled = srsly.pickle_loads(data)
 | 
						|
    assert unpickled[text1] == store1
 | 
						|
    assert unpickled[text2] == store2
 | 
						|
    assert len(stringstore) == len(unpickled)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("text1,text2", [("dog", "cat")])
 | 
						|
def test_pickle_vocab(text1, text2):
 | 
						|
    vocab = Vocab(
 | 
						|
        lex_attr_getters={int(NORM): lambda string: string[:-1]},
 | 
						|
        get_noun_chunks=English.Defaults.syntax_iterators.get("noun_chunks"),
 | 
						|
    )
 | 
						|
    vocab.set_vector("dog", numpy.ones((5,), dtype="f"))
 | 
						|
    lex1 = vocab[text1]
 | 
						|
    lex2 = vocab[text2]
 | 
						|
    assert lex1.norm_ == text1[:-1]
 | 
						|
    assert lex2.norm_ == text2[:-1]
 | 
						|
    data = srsly.pickle_dumps(vocab)
 | 
						|
    unpickled = srsly.pickle_loads(data)
 | 
						|
    assert unpickled[text1].orth == lex1.orth
 | 
						|
    assert unpickled[text2].orth == lex2.orth
 | 
						|
    assert unpickled[text1].norm == lex1.norm
 | 
						|
    assert unpickled[text2].norm == lex2.norm
 | 
						|
    assert unpickled[text1].norm != unpickled[text2].norm
 | 
						|
    assert unpickled.vectors is not None
 | 
						|
    assert unpickled.get_noun_chunks is not None
 | 
						|
    assert list(vocab["dog"].vector) == [1.0, 1.0, 1.0, 1.0, 1.0]
 | 
						|
 | 
						|
 | 
						|
def test_pickle_doc(en_vocab):
 | 
						|
    words = ["a", "b", "c"]
 | 
						|
    deps = ["dep"] * len(words)
 | 
						|
    heads = [0] * len(words)
 | 
						|
    doc = Doc(
 | 
						|
        en_vocab,
 | 
						|
        words=words,
 | 
						|
        deps=deps,
 | 
						|
        heads=heads,
 | 
						|
    )
 | 
						|
    data = srsly.pickle_dumps(doc)
 | 
						|
    unpickled = srsly.pickle_loads(data)
 | 
						|
    assert [t.text for t in unpickled] == words
 | 
						|
    assert [t.dep_ for t in unpickled] == deps
 | 
						|
    assert [t.head.i for t in unpickled] == heads
 | 
						|
    assert list(doc.noun_chunks) == []
 |