spaCy/spacy/ml/component_models.py
2020-02-18 15:38:18 +01:00

228 lines
7.9 KiB
Python

from spacy import util
from spacy.ml.extract_ngrams import extract_ngrams
from ..attrs import ID, ORTH, NORM, PREFIX, SUFFIX, SHAPE
from ..errors import Errors
from ._character_embed import CharacterEmbed
from thinc.api import Model, Maxout, Linear, residual, reduce_mean, list2ragged
from thinc.api import PyTorchLSTM, add, MultiSoftmax, HashEmbed, StaticVectors
from thinc.api import expand_window, FeatureExtractor, SparseLinear, chain
from thinc.api import clone, concatenate, with_array, Softmax, Logistic, uniqued
from thinc.api import zero_init
def build_text_classifier(arch, config):
if arch == "cnn":
return build_simple_cnn_text_classifier(**config)
elif arch == "bow":
return build_bow_text_classifier(**config)
else:
raise ValueError("Unexpected textcat arch")
def build_simple_cnn_text_classifier(tok2vec, nr_class, exclusive_classes, **cfg):
"""
Build a simple CNN text classifier, given a token-to-vector model as inputs.
If exclusive_classes=True, a softmax non-linearity is applied, so that the
outputs sum to 1. If exclusive_classes=False, a logistic non-linearity
is applied instead, so that outputs are in the range [0, 1].
"""
with Model.define_operators({">>": chain}):
if exclusive_classes:
output_layer = Softmax(nO=nr_class, nI=tok2vec.get_dim("nO"))
else:
# TODO: experiment with init_w=zero_init
output_layer = Linear(nO=nr_class, nI=tok2vec.get_dim("nO")) >> Logistic()
model = tok2vec >> list2ragged() >> reduce_mean() >> output_layer
model.set_ref("tok2vec", tok2vec)
model.set_dim("nO", nr_class)
return model
def build_bow_text_classifier(
nr_class, exclusive_classes, ngram_size=1, no_output_layer=False, **cfg
):
with Model.define_operators({">>": chain}):
model = extract_ngrams(ngram_size, attr=ORTH) >> SparseLinear(nr_class)
model.to_cpu()
if not no_output_layer:
output_layer = (
Softmax(nO=nr_class) if exclusive_classes else Logistic(nO=nr_class)
)
output_layer.to_cpu()
model = model >> output_layer
model.set_dim("nO", nr_class)
return model
def build_nel_encoder(embed_width, hidden_width, ner_types, **cfg):
if "entity_width" not in cfg:
raise ValueError(Errors.E144.format(param="entity_width"))
conv_depth = cfg.get("conv_depth", 2)
cnn_maxout_pieces = cfg.get("cnn_maxout_pieces", 3)
pretrained_vectors = cfg.get("pretrained_vectors", None)
context_width = cfg.get("entity_width")
with Model.define_operators({">>": chain, "**": clone}):
nel_tok2vec = Tok2Vec(
width=hidden_width,
embed_size=embed_width,
pretrained_vectors=pretrained_vectors,
cnn_maxout_pieces=cnn_maxout_pieces,
subword_features=True,
conv_depth=conv_depth,
bilstm_depth=0,
)
model = (
nel_tok2vec
>> list2ragged()
>> reduce_mean()
>> residual(Maxout(nO=hidden_width, nI=hidden_width, nP=2, dropout=0.0))
>> Linear(nO=context_width, nI=hidden_width)
)
model.initialize()
model.set_ref("tok2vec", nel_tok2vec)
model.set_dim("nO", context_width)
return model
def masked_language_model(*args, **kwargs):
raise NotImplementedError
def build_tagger_model(nr_class, tok2vec):
token_vector_width = tok2vec.get_dim("nO")
# TODO: glorot_uniform_init seems to work a bit better than zero_init here?!
softmax = with_array(Softmax(nO=nr_class, nI=token_vector_width, init_W=zero_init))
model = chain(tok2vec, softmax)
model.set_ref("tok2vec", tok2vec)
model.set_ref("softmax", softmax)
return model
def build_morphologizer_model(class_nums, **cfg):
embed_size = util.env_opt("embed_size", 7000)
if "token_vector_width" in cfg:
token_vector_width = cfg["token_vector_width"]
else:
token_vector_width = util.env_opt("token_vector_width", 128)
pretrained_vectors = cfg.get("pretrained_vectors")
char_embed = cfg.get("char_embed", True)
with Model.define_operators({">>": chain, "+": add, "**": clone}):
if "tok2vec" in cfg:
tok2vec = cfg["tok2vec"]
else:
tok2vec = Tok2Vec(
token_vector_width,
embed_size,
char_embed=char_embed,
pretrained_vectors=pretrained_vectors,
)
softmax = with_array(MultiSoftmax(nOs=class_nums, nI=token_vector_width))
model = tok2vec >> softmax
model.set_ref("tok2vec", tok2vec)
model.set_ref("softmax", softmax)
return model
def Tok2Vec(
width,
embed_size,
pretrained_vectors=None,
window_size=1,
cnn_maxout_pieces=3,
subword_features=True,
char_embed=False,
conv_depth=4,
bilstm_depth=0,
):
if char_embed:
subword_features = False
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
norm = HashEmbed(nO=width, nV=embed_size, column=cols.index(NORM), dropout=0.0)
if subword_features:
prefix = HashEmbed(
nO=width, nV=embed_size // 2, column=cols.index(PREFIX), dropout=0.0
)
suffix = HashEmbed(
nO=width, nV=embed_size // 2, column=cols.index(SUFFIX), dropout=0.0
)
shape = HashEmbed(
nO=width, nV=embed_size // 2, column=cols.index(SHAPE), dropout=0.0
)
else:
prefix, suffix, shape = (None, None, None)
if pretrained_vectors is not None:
glove = StaticVectors(
vectors=pretrained_vectors, nO=width, column=cols.index(ID), dropout=0.0
)
if subword_features:
embed = uniqued(
(glove | norm | prefix | suffix | shape)
>> Maxout(
nO=width, nI=width * 5, nP=3, dropout=0.0, normalize=True
),
column=cols.index(ORTH),
)
else:
embed = uniqued(
(glove | norm)
>> Maxout(
nO=width, nI=width * 2, nP=3, dropout=0.0, normalize=True
),
column=cols.index(ORTH),
)
elif subword_features:
embed = uniqued(
concatenate(norm, prefix, suffix, shape)
>> Maxout(nO=width, nI=width * 4, nP=3, dropout=0.0, normalize=True),
column=cols.index(ORTH),
)
elif char_embed:
embed = CharacterEmbed(nM=64, nC=8) | FeatureExtractor(cols) >> with_array(
norm
)
reduce_dimensions = Maxout(
nO=width,
nI=64 * 8 + width,
nP=cnn_maxout_pieces,
dropout=0.0,
normalize=True,
)
else:
embed = norm
convolution = residual(
expand_window(window_size=window_size)
>> Maxout(
nO=width,
nI=width * 3,
nP=cnn_maxout_pieces,
dropout=0.0,
normalize=True,
)
)
if char_embed:
tok2vec = embed >> with_array(
reduce_dimensions >> convolution ** conv_depth, pad=conv_depth
)
else:
tok2vec = FeatureExtractor(cols) >> with_array(
embed >> convolution ** conv_depth, pad=conv_depth
)
if bilstm_depth >= 1:
tok2vec = tok2vec >> PyTorchLSTM(
nO=width, nI=width, depth=bilstm_depth, bi=True
)
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
tok2vec.set_dim("nO", width)
tok2vec.set_ref("embed", embed)
return tok2vec