mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
37c7c85a86
* Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
455 lines
13 KiB
Plaintext
455 lines
13 KiB
Plaintext
//- 💫 DOCS > API > TOP-LEVEL > UTIL
|
||
|
||
p
|
||
| spaCy comes with a small collection of utility functions located in
|
||
| #[+src(gh("spaCy", "spacy/util.py")) #[code spacy/util.py]].
|
||
| Because utility functions are mostly intended for
|
||
| #[strong internal use within spaCy], their behaviour may change with
|
||
| future releases. The functions documented on this page should be safe
|
||
| to use and we'll try to ensure backwards compatibility. However, we
|
||
| recommend having additional tests in place if your application depends on
|
||
| any of spaCy's utilities.
|
||
|
||
+h(3, "util.get_data_path") util.get_data_path
|
||
+tag function
|
||
|
||
p
|
||
| Get path to the data directory where spaCy looks for models. Defaults to
|
||
| #[code spacy/data].
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code require_exists]
|
||
+cell bool
|
||
+cell Only return path if it exists, otherwise return #[code None].
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell #[code Path] / #[code None]
|
||
+cell Data path or #[code None].
|
||
|
||
+h(3, "util.set_data_path") util.set_data_path
|
||
+tag function
|
||
|
||
p
|
||
| Set custom path to the data directory where spaCy looks for models.
|
||
|
||
+aside-code("Example").
|
||
util.set_data_path('/custom/path')
|
||
util.get_data_path()
|
||
# PosixPath('/custom/path')
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code path]
|
||
+cell unicode or #[code Path]
|
||
+cell Path to new data directory.
|
||
|
||
+h(3, "util.get_lang_class") util.get_lang_class
|
||
+tag function
|
||
|
||
p
|
||
| Import and load a #[code Language] class. Allows lazy-loading
|
||
| #[+a("/usage/adding-languages") language data] and importing
|
||
| languages using the two-letter language code. To add a language code
|
||
| for a custom language class, you can use the
|
||
| #[+api("top-level#util.set_lang_class") #[code set_lang_class]] helper.
|
||
|
||
+aside-code("Example").
|
||
for lang_id in ['en', 'de']:
|
||
lang_class = util.get_lang_class(lang_id)
|
||
lang = lang_class()
|
||
tokenizer = lang.Defaults.create_tokenizer()
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code lang]
|
||
+cell unicode
|
||
+cell Two-letter language code, e.g. #[code 'en'].
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell #[code Language]
|
||
+cell Language class.
|
||
|
||
+h(3, "util.set_lang_class") util.set_lang_class
|
||
+tag function
|
||
|
||
p
|
||
| Set a custom #[code Language] class name that can be loaded via
|
||
| #[+api("top-level#util.get_lang_class") #[code get_lang_class]]. If
|
||
| your model uses a custom language, this is required so that spaCy can
|
||
| load the correct class from the two-letter language code.
|
||
|
||
+aside-code("Example").
|
||
from spacy.lang.xy import CustomLanguage
|
||
|
||
util.set_lang_class('xy', CustomLanguage)
|
||
lang_class = util.get_lang_class('xy')
|
||
nlp = lang_class()
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code name]
|
||
+cell unicode
|
||
+cell Two-letter language code, e.g. #[code 'en'].
|
||
|
||
+row
|
||
+cell #[code cls]
|
||
+cell #[code Language]
|
||
+cell The language class, e.g. #[code English].
|
||
|
||
+h(3, "util.load_model") util.load_model
|
||
+tag function
|
||
+tag-new(2)
|
||
|
||
p
|
||
| Load a model from a shortcut link, package or data path. If called with a
|
||
| shortcut link or package name, spaCy will assume the model is a Python
|
||
| package and import and call its #[code load()] method. If called with a
|
||
| path, spaCy will assume it's a data directory, read the language and
|
||
| pipeline settings from the meta.json and initialise a #[code Language]
|
||
| class. The model data will then be loaded in via
|
||
| #[+api("language#from_disk") #[code Language.from_disk()]].
|
||
|
||
+aside-code("Example").
|
||
nlp = util.load_model('en')
|
||
nlp = util.load_model('en_core_web_sm', disable=['ner'])
|
||
nlp = util.load_model('/path/to/data')
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code name]
|
||
+cell unicode
|
||
+cell Package name, shortcut link or model path.
|
||
|
||
+row
|
||
+cell #[code **overrides]
|
||
+cell -
|
||
+cell Specific overrides, like pipeline components to disable.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell #[code Language]
|
||
+cell #[code Language] class with the loaded model.
|
||
|
||
+h(3, "util.load_model_from_path") util.load_model_from_path
|
||
+tag function
|
||
+tag-new(2)
|
||
|
||
p
|
||
| Load a model from a data directory path. Creates the
|
||
| #[+api("language") #[code Language]] class and pipeline based on the
|
||
| directory's meta.json and then calls
|
||
| #[+api("language#from_disk") #[code from_disk()]] with the path. This
|
||
| function also makes it easy to test a new model that you haven't packaged
|
||
| yet.
|
||
|
||
+aside-code("Example").
|
||
nlp = load_model_from_path('/path/to/data')
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code model_path]
|
||
+cell unicode
|
||
+cell Path to model data directory.
|
||
|
||
+row
|
||
+cell #[code meta]
|
||
+cell dict
|
||
+cell
|
||
| Model meta data. If #[code False], spaCy will try to load the
|
||
| meta from a meta.json in the same directory.
|
||
|
||
+row
|
||
+cell #[code **overrides]
|
||
+cell -
|
||
+cell Specific overrides, like pipeline components to disable.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell #[code Language]
|
||
+cell #[code Language] class with the loaded model.
|
||
|
||
+h(3, "util.load_model_from_init_py") util.load_model_from_init_py
|
||
+tag function
|
||
+tag-new(2)
|
||
|
||
p
|
||
| A helper function to use in the #[code load()] method of a model package's
|
||
| #[+src(gh("spacy-models", "template/model/xx_model_name/__init__.py")) #[code __init__.py]].
|
||
|
||
+aside-code("Example").
|
||
from spacy.util import load_model_from_init_py
|
||
|
||
def load(**overrides):
|
||
return load_model_from_init_py(__file__, **overrides)
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code init_file]
|
||
+cell unicode
|
||
+cell Path to model's __init__.py, i.e. #[code __file__].
|
||
|
||
+row
|
||
+cell #[code **overrides]
|
||
+cell -
|
||
+cell Specific overrides, like pipeline components to disable.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell #[code Language]
|
||
+cell #[code Language] class with the loaded model.
|
||
|
||
+h(3, "util.get_model_meta") util.get_model_meta
|
||
+tag function
|
||
+tag-new(2)
|
||
|
||
p
|
||
| Get a model's meta.json from a directory path and validate its contents.
|
||
|
||
+aside-code("Example").
|
||
meta = util.get_model_meta('/path/to/model')
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code path]
|
||
+cell unicode or #[code Path]
|
||
+cell Path to model directory.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell dict
|
||
+cell The model's meta data.
|
||
|
||
+h(3, "util.is_package") util.is_package
|
||
+tag function
|
||
|
||
p
|
||
| Check if string maps to a package installed via pip. Mainly used to
|
||
| validate #[+a("/usage/models") model packages].
|
||
|
||
+aside-code("Example").
|
||
util.is_package('en_core_web_sm') # True
|
||
util.is_package('xyz') # False
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code name]
|
||
+cell unicode
|
||
+cell Name of package.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell #[code bool]
|
||
+cell #[code True] if installed package, #[code False] if not.
|
||
|
||
+h(3, "util.get_package_path") util.get_package_path
|
||
+tag function
|
||
+tag-new(2)
|
||
|
||
p
|
||
| Get path to an installed package. Mainly used to resolve the location of
|
||
| #[+a("/usage/models") model packages]. Currently imports the package
|
||
| to find its path.
|
||
|
||
+aside-code("Example").
|
||
util.get_package_path('en_core_web_sm')
|
||
# /usr/lib/python3.6/site-packages/en_core_web_sm
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code package_name]
|
||
+cell unicode
|
||
+cell Name of installed package.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell #[code Path]
|
||
+cell Path to model package directory.
|
||
|
||
+h(3, "util.is_in_jupyter") util.is_in_jupyter
|
||
+tag function
|
||
+tag-new(2)
|
||
|
||
p
|
||
| Check if user is running spaCy from a #[+a("https://jupyter.org") Jupyter]
|
||
| notebook by detecting the IPython kernel. Mainly used for the
|
||
| #[+api("top-level#displacy") #[code displacy]] visualizer.
|
||
|
||
+aside-code("Example").
|
||
html = '<h1>Hello world!</h1>'
|
||
if util.is_in_jupyter():
|
||
from IPython.core.display import display, HTML
|
||
display(HTML(html))
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row("foot")
|
||
+cell returns
|
||
+cell bool
|
||
+cell #[code True] if in Jupyter, #[code False] if not.
|
||
|
||
+h(3, "util.update_exc") util.update_exc
|
||
+tag function
|
||
|
||
p
|
||
| Update, validate and overwrite
|
||
| #[+a("/usage/adding-languages#tokenizer-exceptions") tokenizer exceptions].
|
||
| Used to combine global exceptions with custom, language-specific
|
||
| exceptions. Will raise an error if key doesn't match #[code ORTH] values.
|
||
|
||
+aside-code("Example").
|
||
BASE = {"a.": [{ORTH: "a."}], ":)": [{ORTH: ":)"}]}
|
||
NEW = {"a.": [{ORTH: "a.", LEMMA: "all"}]}
|
||
exceptions = util.update_exc(BASE, NEW)
|
||
# {"a.": [{ORTH: "a.", LEMMA: "all"}], ":)": [{ORTH: ":)"}]}
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code base_exceptions]
|
||
+cell dict
|
||
+cell Base tokenizer exceptions.
|
||
|
||
+row
|
||
+cell #[code *addition_dicts]
|
||
+cell dicts
|
||
+cell Exception dictionaries to add to the base exceptions, in order.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell dict
|
||
+cell Combined tokenizer exceptions.
|
||
|
||
+h(3, "util.minibatch") util.minibatch
|
||
+tag function
|
||
+tag-new(2)
|
||
|
||
p
|
||
| Iterate over batches of items. #[code size] may be an iterator, so that
|
||
| batch-size can vary on each step.
|
||
|
||
+aside-code("Example").
|
||
batches = minibatch(train_data)
|
||
for batch in batches:
|
||
texts, annotations = zip(*batch)
|
||
nlp.update(texts, annotations)
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code items]
|
||
+cell iterable
|
||
+cell The items to batch up.
|
||
|
||
+row
|
||
+cell #[code size]
|
||
+cell int / iterable
|
||
+cell
|
||
| The batch size(s). Use
|
||
| #[+api("top-level#util.compounding") #[code util.compounding]] or
|
||
| #[+api("top-level#util.decaying") #[code util.decaying]] or
|
||
| for an infinite series of compounding or decaying values.
|
||
|
||
+row("foot")
|
||
+cell yields
|
||
+cell list
|
||
+cell The batches.
|
||
|
||
+h(3, "util.compounding") util.compounding
|
||
+tag function
|
||
+tag-new(2)
|
||
|
||
p
|
||
| Yield an infinite series of compounding values. Each time the generator
|
||
| is called, a value is produced by multiplying the previous value by the
|
||
| compound rate.
|
||
|
||
+aside-code("Example").
|
||
sizes = compounding(1., 10., 1.5)
|
||
assert next(sizes) == 1.
|
||
assert next(sizes) == 1. * 1.5
|
||
assert next(sizes) == 1.5 * 1.5
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code start]
|
||
+cell int / float
|
||
+cell The first value.
|
||
|
||
+row
|
||
+cell #[code stop]
|
||
+cell int / float
|
||
+cell The maximum value.
|
||
|
||
+row
|
||
+cell #[code compound]
|
||
+cell int / float
|
||
+cell The compounding factor.
|
||
|
||
+row("foot")
|
||
+cell yields
|
||
+cell int
|
||
+cell Compounding values.
|
||
|
||
+h(3, "util.decaying") util.decaying
|
||
+tag function
|
||
+tag-new(2)
|
||
|
||
p
|
||
| Yield an infinite series of linearly decaying values.
|
||
|
||
+aside-code("Example").
|
||
sizes = decaying(1., 10., 0.001)
|
||
assert next(sizes) == 1.
|
||
assert next(sizes) == 1. - 0.001
|
||
assert next(sizes) == 0.999 - 0.001
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code start]
|
||
+cell int / float
|
||
+cell The first value.
|
||
|
||
+row
|
||
+cell #[code end]
|
||
+cell int / float
|
||
+cell The maximum value.
|
||
|
||
+row
|
||
+cell #[code decay]
|
||
+cell int / float
|
||
+cell The decaying factor.
|
||
|
||
+row("foot")
|
||
+cell yields
|
||
+cell int
|
||
+cell The decaying values.
|
||
|
||
+h(3, "util.itershuffle") util.itershuffle
|
||
+tag function
|
||
+tag-new(2)
|
||
|
||
p
|
||
| Shuffle an iterator. This works by holding #[code bufsize] items back and
|
||
| yielding them sometime later. Obviously, this is not unbiased – but
|
||
| should be good enough for batching. Larger bufsize means less bias.
|
||
|
||
+aside-code("Example").
|
||
values = range(1000)
|
||
shuffled = itershuffle(values)
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code iterable]
|
||
+cell iterable
|
||
+cell Iterator to shuffle.
|
||
|
||
+row
|
||
+cell #[code buffsize]
|
||
+cell int
|
||
+cell Items to hold back.
|
||
|
||
+row("foot")
|
||
+cell yields
|
||
+cell iterable
|
||
+cell The shuffled iterator.
|