mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	* Integrate Python kernel via Binder * Add live model test for languages with examples * Update docs and code examples * Adjust margin (if not bootstrapped) * Add binder version to global config * Update terminal and executable code mixins * Pass attributes through infobox and section * Hide v-cloak * Fix example * Take out model comparison for now * Add meta text for compat * Remove chart.js dependency * Tidy up and simplify JS and port big components over to Vue * Remove chartjs example * Add Twitter icon * Add purple stylesheet option * Add utility for hand cursor (special cases only) * Add transition classes * Add small option for section * Add thumb object for small round thumbnail images * Allow unset code block language via "none" value (workaround to still allow unset language to default to DEFAULT_SYNTAX) * Pass through attributes * Add syntax highlighting definitions for Julia, R and Docker * Add website icon * Remove user survey from navigation * Don't hide GitHub icon on small screens * Make top navigation scrollable on small screens * Remove old resources page and references to it * Add Universe * Add helper functions for better page URL and title * Update site description * Increment versions * Update preview images * Update mentions of resources * Fix image * Fix social images * Fix problem with cover sizing and floats * Add divider and move badges into heading * Add docstrings * Reference converting section * Add section on converting word vectors * Move converting section to custom section and fix formatting * Remove old fastText example * Move extensions content to own section Keep weird ID to not break permalinks for now (we don't want to rewrite URLs if not absolutely necessary) * Use better component example and add factories section * Add note on larger model * Use better example for non-vector * Remove similarity in context section Only works via small models with tensors so has always been kind of confusing * Add note on init-model command * Fix lightning tour examples and make excutable if possible * Add spacy train CLI section to train * Fix formatting and add video * Fix formatting * Fix textcat example description (resolves #2246) * Add dummy file to try resolve conflict * Delete dummy file * Tidy up [ci skip] * Ensure sufficient height of loading container * Add loading animation to universe * Update Thebelab build and use better startup message * Fix asset versioning * Fix typo [ci skip] * Add note on project idea label
		
			
				
	
	
		
			250 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			250 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //- 💫 DOCS > USAGE > WHAT'S NEW IN V2.0 > NEW FEATURES
 | ||
| 
 | ||
| p
 | ||
|     |  This section contains an overview of the most important
 | ||
|     |  #[strong new features and improvements]. The #[+a("/api") API docs]
 | ||
|     |  include additional  deprecation notes. New methods and functions that
 | ||
|     |  were introduced in this version are marked with a
 | ||
|     |  #[span.u-text-tag.u-text-tag--spaced v2.0] tag.
 | ||
| 
 | ||
| +h(3, "features-models") Convolutional neural network models
 | ||
| 
 | ||
| +aside-code("Example", "bash")
 | ||
|     for _, lang in MODELS
 | ||
|         if lang != "xx"
 | ||
|             | python -m spacy download #{lang}  # default #{LANGUAGES[lang]} model!{'\n'}
 | ||
|     | python -m spacy download xx_ent_wiki_sm  # multi-language NER
 | ||
| 
 | ||
| p
 | ||
|     |  spaCy v2.0 features new neural models for tagging,
 | ||
|     |  parsing and entity recognition. The models have
 | ||
|     |  been designed and implemented from scratch specifically for spaCy, to
 | ||
|     |  give you an unmatched balance of speed, size and accuracy. The new
 | ||
|     |  models are #[strong 10× smaller], #[strong 20% more accurate],
 | ||
|     |  and #[strong even cheaper to run] than the previous generation.
 | ||
| 
 | ||
| p
 | ||
|     |  spaCy v2.0's new neural network models bring significant improvements in
 | ||
|     |  accuracy, especially for English Named Entity Recognition. The new
 | ||
|     |  #[+a("/models/en#en_core_web_lg") #[code en_core_web_lg]] model makes
 | ||
|     |  about #[strong 25% fewer mistakes] than the corresponding v1.x model and
 | ||
|     |  is within #[strong 1% of the current state-of-the-art]
 | ||
|     |  (#[+a("https://arxiv.org/pdf/1702.02098.pdf") Strubell et al., 2017]).
 | ||
|     |  The v2.0 models are also cheaper to run at scale, as they require
 | ||
|     |  #[strong under 1 GB of memory] per process.
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[+label-inline Usage:] #[+a("/models") Models directory]
 | ||
|     |  #[+a("#benchmarks") Benchmarks]
 | ||
| 
 | ||
| +h(3, "features-pipelines") Improved processing pipelines
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     # Set custom attributes
 | ||
|     Doc.set_extension('my_attr', default=False)
 | ||
|     Token.set_extension('my_attr', getter=my_token_getter)
 | ||
|     assert doc._.my_attr, token._.my_attr
 | ||
| 
 | ||
|     # Add components to the pipeline
 | ||
|     my_component = lambda doc: doc
 | ||
|     nlp.add_pipe(my_component)
 | ||
| 
 | ||
| p
 | ||
|     |  It's now much easier to #[strong customise the pipeline] with your own
 | ||
|     |  components: functions that receive a #[code Doc] object, modify and
 | ||
|     |  return it. Extensions let you write any
 | ||
|     |  #[strong attributes, properties and methods] to the #[code Doc],
 | ||
|     |  #[code Token] and #[code Span]. You can add data, implement new
 | ||
|     |  features, integrate other libraries with spaCy or plug in your own
 | ||
|     |  machine learning models.
 | ||
| 
 | ||
| +image
 | ||
|     include ../../assets/img/pipeline.svg
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[+label-inline API:] #[+api("language") #[code Language]],
 | ||
|     |  #[+api("doc#set_extension") #[code Doc.set_extension]],
 | ||
|     |  #[+api("span#set_extension") #[code Span.set_extension]],
 | ||
|     |  #[+api("token#set_extension") #[code Token.set_extension]]
 | ||
|     |  #[+label-inline Usage:]
 | ||
|     |  #[+a("/usage/processing-pipelines") Processing pipelines]
 | ||
|     |  #[+label-inline Code:]
 | ||
|     |  #[+src("/usage/examples#section-pipeline") Pipeline examples]
 | ||
| 
 | ||
| +h(3, "features-text-classification") Text classification
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     textcat = nlp.create_pipe('textcat')
 | ||
|     nlp.add_pipe(textcat, last=True)
 | ||
|     optimizer = nlp.begin_training()
 | ||
|     for itn in range(100):
 | ||
|         for doc, gold in train_data:
 | ||
|             nlp.update([doc], [gold], sgd=optimizer)
 | ||
|     doc = nlp(u'This is a text.')
 | ||
|     print(doc.cats)
 | ||
| 
 | ||
| p
 | ||
|     |  spaCy v2.0 lets you add text categorization models to spaCy pipelines.
 | ||
|     |  The model supports classification with multiple, non-mutually
 | ||
|     |  exclusive labels – so multiple labels can apply at once. You can
 | ||
|     |  change the model architecture rather easily, but by default, the
 | ||
|     |  #[code TextCategorizer] class uses a convolutional neural network to
 | ||
|     |  assign position-sensitive vectors to each word in the document.
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[+label-inline API:] #[+api("textcategorizer") #[code TextCategorizer]],
 | ||
|     |  #[+api("doc#attributes") #[code Doc.cats]],
 | ||
|     |  #[+api("goldparse#attributes") #[code GoldParse.cats]]#[br]
 | ||
|     |  #[+label-inline Usage:] #[+a("/usage/training#textcat") Training a text classication model]
 | ||
| 
 | ||
| +h(3, "features-hash-ids") Hash values instead of integer IDs
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     doc = nlp(u'I love coffee')
 | ||
|     assert doc.vocab.strings[u'coffee'] == 3197928453018144401
 | ||
|     assert doc.vocab.strings[3197928453018144401] == u'coffee'
 | ||
| 
 | ||
|     beer_hash = doc.vocab.strings.add(u'beer')
 | ||
|     assert doc.vocab.strings[u'beer'] == beer_hash
 | ||
|     assert doc.vocab.strings[beer_hash] == u'beer'
 | ||
| 
 | ||
| p
 | ||
|     |  The #[+api("stringstore") #[code StringStore]] now resolves all strings
 | ||
|     |  to hash values instead of integer IDs. This means that the string-to-int
 | ||
|     |  mapping #[strong no longer depends on the vocabulary state], making a lot
 | ||
|     |  of workflows much simpler, especially during training. Unlike integer IDs
 | ||
|     |  in spaCy v1.x, hash values will #[strong always match] – even across
 | ||
|     |  models. Strings can now be added explicitly using the new
 | ||
|     |  #[+api("stringstore#add") #[code Stringstore.add]] method. A token's hash
 | ||
|     |  is available via #[code token.orth].
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[+label-inline API:] #[+api("stringstore") #[code StringStore]]
 | ||
|     |  #[+label-inline Usage:] #[+a("/usage/spacy-101#vocab") Vocab, hashes and lexemes 101]
 | ||
| 
 | ||
| +h(3, "features-vectors") Improved word vectors support
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     for word, vector in vector_data:
 | ||
|         nlp.vocab.set_vector(word, vector)
 | ||
|     nlp.vocab.vectors.from_glove('/path/to/vectors')
 | ||
|     # keep 10000 unique vectors and remap the rest
 | ||
|     nlp.vocab.prune_vectors(10000)
 | ||
|     nlp.to_disk('/model')
 | ||
| 
 | ||
| p
 | ||
|     |  The new #[+api("vectors") #[code Vectors]] class helps the
 | ||
|     |  #[code Vocab] manage the vectors assigned to strings, and lets you
 | ||
|     |  assign vectors individually, or
 | ||
|     |  #[+a("/usage/vectors-similarity#custom-loading-glove") load in GloVe vectors]
 | ||
|     |  from a directory. To help you strike a good balance between coverage
 | ||
|     |  and memory usage, the #[code Vectors] class lets you map
 | ||
|     |  #[strong multiple keys] to the #[strong same row] of the table. If
 | ||
|     |  you're using the #[+api("cli#vocab") #[code spacy vocab]] command to
 | ||
|     |  create a vocabulary, pruning the vectors will be taken care of
 | ||
|     |  automatically. Otherwise, you can use the new
 | ||
|     |  #[+api("vocab#prune_vectors") #[code Vocab.prune_vectors]].
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[+label-inline API:] #[+api("vectors") #[code Vectors]],
 | ||
|     |  #[+api("vocab") #[code Vocab]]
 | ||
|     |  #[+label-inline Usage:] #[+a("/usage/vectors-similarity") Word vectors and semantic similarity]
 | ||
| 
 | ||
| +h(3, "features-serializer") Saving, loading and serialization
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     nlp = spacy.load('en') # shortcut link
 | ||
|     nlp = spacy.load('en_core_web_sm') # package
 | ||
|     nlp = spacy.load('/path/to/en') # unicode path
 | ||
|     nlp = spacy.load(Path('/path/to/en')) # pathlib Path
 | ||
| 
 | ||
|     nlp.to_disk('/path/to/nlp')
 | ||
|     nlp = English().from_disk('/path/to/nlp')
 | ||
| 
 | ||
| p
 | ||
|     |  spaCy's serialization API has been made consistent across classes and
 | ||
|     |  objects. All container classes, i.e. #[code Language], #[code Doc],
 | ||
|     |  #[code Vocab] and #[code StringStore] now have a #[code to_bytes()],
 | ||
|     |  #[code from_bytes()], #[code to_disk()] and #[code from_disk()] method
 | ||
|     |  that supports the Pickle protocol.
 | ||
| 
 | ||
| p
 | ||
|     |  The improved #[code spacy.load] makes loading models easier and more
 | ||
|     |  transparent. You can load a model by supplying its
 | ||
|     |  #[+a("/usage/models#usage") shortcut link], the name of an installed
 | ||
|     |  #[+a("/models") model package] or a path. The #[code Language] class to
 | ||
|     |  initialise will be determined based on the model's settings. For a blank l
 | ||
|     |  anguage, you can import the class directly, e.g.
 | ||
|     |  #[code.u-break from spacy.lang.en import English] or use
 | ||
|     |  #[+api("spacy#blank") #[code spacy.blank()]].
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[+label-inline API:] #[+api("spacy#load") #[code spacy.load]],
 | ||
|     |  #[+api("language#to_disk") #[code Language.to_disk]]
 | ||
|     |  #[+label-inline Usage:] #[+a("/usage/models#usage") Models],
 | ||
|     |  #[+a("/usage/training#saving-loading") Saving and loading]
 | ||
| 
 | ||
| +h(3, "features-displacy") displaCy visualizer with Jupyter support
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     from spacy import displacy
 | ||
|     doc = nlp(u'This is a sentence about Facebook.')
 | ||
|     displacy.serve(doc, style='dep') # run the web server
 | ||
|     html = displacy.render(doc, style='ent') # generate HTML
 | ||
| 
 | ||
| p
 | ||
|     |  Our popular dependency and named entity visualizers are now an official
 | ||
|     |  part of the spaCy library. displaCy can run a simple web server, or
 | ||
|     |  generate raw HTML markup or SVG files to be exported. You can pass in one
 | ||
|     |  or more docs, and customise the style. displaCy also auto-detects whether
 | ||
|     |  you're running #[+a("https://jupyter.org") Jupyter] and will render the
 | ||
|     |  visualizations in your notebook.
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[+label-inline API:] #[+api("top-level#displacy") #[code displacy]]
 | ||
|     |  #[+label-inline Usage:] #[+a("/usage/visualizers") Visualizing spaCy]
 | ||
| 
 | ||
| +h(3, "features-language") Improved language data and lazy loading
 | ||
| 
 | ||
| p
 | ||
|     |  Language-specfic data now lives in its own submodule, #[code spacy.lang].
 | ||
|     |  Languages are lazy-loaded, i.e. only loaded when you import a
 | ||
|     |  #[code Language] class, or load a model that initialises one. This allows
 | ||
|     |  languages to contain more custom data, e.g. lemmatizer lookup tables, or
 | ||
|     |  complex regular expressions. The language data has also been tidied up
 | ||
|     |  and simplified. spaCy now also supports simple lookup-based
 | ||
|     |  lemmatization – and #[strong #{LANG_COUNT} languages] in total!
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[+label-inline API:] #[+api("language") #[code Language]]
 | ||
|     |  #[+label-inline Code:] #[+src(gh("spaCy", "spacy/lang")) #[code spacy/lang]]
 | ||
|     |  #[+label-inline Usage:] #[+a("/usage/adding-languages") Adding languages]
 | ||
| 
 | ||
| +h(3, "features-matcher") Revised matcher API and phrase matcher
 | ||
| 
 | ||
| +aside-code("Example").
 | ||
|     from spacy.matcher import Matcher, PhraseMatcher
 | ||
| 
 | ||
|     matcher = Matcher(nlp.vocab)
 | ||
|     matcher.add('HEARTS', None, [{'ORTH': '❤️', 'OP': '+'}])
 | ||
| 
 | ||
|     phrasematcher = PhraseMatcher(nlp.vocab)
 | ||
|     phrasematcher.add('OBAMA', None, nlp(u"Barack Obama"))
 | ||
| 
 | ||
| p
 | ||
|     |  Patterns can now be added to the matcher by calling
 | ||
|     |  #[+api("matcher#add") #[code matcher.add()]] with a match ID, an optional
 | ||
|     |  callback function to be invoked on each match, and one or more patterns.
 | ||
|     |  This allows you to write powerful, pattern-specific logic using only one
 | ||
|     |  matcher. For example, you might only want to merge some entity types,
 | ||
|     |  and set custom flags for other matched patterns. The new
 | ||
|     |  #[+api("phrasematcher") #[code PhraseMatcher]] lets you efficiently
 | ||
|     |  match very large terminology lists using #[code Doc] objects as match
 | ||
|     |  patterns.
 | ||
| 
 | ||
| +infobox
 | ||
|     |  #[+label-inline API:] #[+api("matcher") #[code Matcher]],
 | ||
|     |  #[+api("phrasematcher") #[code PhraseMatcher]]
 | ||
|     |  #[+label-inline Usage:]
 | ||
|     |  #[+a("/usage/linguistic-features#rule-based-matching") Rule-based matching]
 |