spaCy/spacy/training/loggers.py
2023-06-26 11:41:03 +02:00

200 lines
7.6 KiB
Python

import sys
from pathlib import Path
from typing import IO, TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
import srsly
import tqdm
from wasabi import Printer
from .. import util
from ..errors import Errors
from ..util import registry
if TYPE_CHECKING:
from ..language import Language # noqa: F401
def setup_table(
*, cols: List[str], widths: List[int], max_width: int = 13
) -> Tuple[List[str], List[int], List[str]]:
final_cols = []
final_widths = []
for col, width in zip(cols, widths):
if len(col) > max_width:
col = col[: max_width - 3] + "..." # shorten column if too long
final_cols.append(col.upper())
final_widths.append(max(len(col), width))
return final_cols, final_widths, ["r" for _ in final_widths]
# We cannot rename this method as it's directly imported
# and used by external packages such as spacy-loggers.
@registry.loggers("spacy.ConsoleLogger.v2")
def console_logger(
progress_bar: bool = False,
console_output: bool = True,
output_file: Optional[Union[str, Path]] = None,
):
"""The ConsoleLogger.v2 prints out training logs in the console and/or saves them to a jsonl file.
progress_bar (bool): Whether the logger should print a progress bar tracking the steps till the next evaluation pass.
console_output (bool): Whether the logger should print the logs on the console.
output_file (Optional[Union[str, Path]]): The file to save the training logs to.
"""
return console_logger_v3(
progress_bar=None if progress_bar is False else "eval",
console_output=console_output,
output_file=output_file,
)
@registry.loggers("spacy.ConsoleLogger.v3")
def console_logger_v3(
progress_bar: Optional[str] = None,
console_output: bool = True,
output_file: Optional[Union[str, Path]] = None,
):
"""The ConsoleLogger.v3 prints out training logs in the console and/or saves them to a jsonl file.
progress_bar (Optional[str]): Type of progress bar to show in the console. Allowed values:
train - Tracks the number of steps from the beginning of training until the full training run is complete (training.max_steps is reached).
eval - Tracks the number of steps between the previous and next evaluation (training.eval_frequency is reached).
console_output (bool): Whether the logger should print the logs on the console.
output_file (Optional[Union[str, Path]]): The file to save the training logs to.
"""
_log_exist = False
if output_file:
output_file = util.ensure_path(output_file) # type: ignore
if output_file.exists(): # type: ignore
_log_exist = True
if not output_file.parents[0].exists(): # type: ignore
output_file.parents[0].mkdir(parents=True) # type: ignore
def setup_printer(
nlp: "Language", stdout: IO = sys.stdout, stderr: IO = sys.stderr
) -> Tuple[Callable[[Optional[Dict[str, Any]]], None], Callable[[], None]]:
write = lambda text: print(text, file=stdout, flush=True)
msg = Printer(no_print=True)
nonlocal output_file
output_stream = None
if _log_exist:
write(
msg.warn(
f"Saving logs is disabled because {output_file} already exists."
)
)
output_file = None
elif output_file:
write(msg.info(f"Saving results to {output_file}"))
output_stream = open(output_file, "w", encoding="utf-8")
# ensure that only trainable components are logged
logged_pipes = [
name
for name, proc in nlp.pipeline
if hasattr(proc, "is_trainable") and proc.is_trainable
]
max_steps = nlp.config["training"]["max_steps"]
eval_frequency = nlp.config["training"]["eval_frequency"]
score_weights = nlp.config["training"]["score_weights"]
score_cols = [col for col, value in score_weights.items() if value is not None]
loss_cols = [f"Loss {pipe}" for pipe in logged_pipes]
if console_output:
spacing = 2
table_header, table_widths, table_aligns = setup_table(
cols=["E", "#"] + loss_cols + score_cols + ["Score"],
widths=[3, 6] + [8 for _ in loss_cols] + [6 for _ in score_cols] + [6],
)
write(msg.row(table_header, widths=table_widths, spacing=spacing))
write(msg.row(["-" * width for width in table_widths], spacing=spacing))
progress = None
expected_progress_types = ("train", "eval")
if progress_bar is not None and progress_bar not in expected_progress_types:
raise ValueError(
Errors.E1048.format(
unexpected=progress_bar, expected=expected_progress_types
)
)
def log_step(info: Optional[Dict[str, Any]]) -> None:
nonlocal progress
if info is None:
# If we don't have a new checkpoint, just return.
if progress is not None:
progress.update(1)
return
losses = []
log_losses = {}
for pipe_name in logged_pipes:
losses.append("{0:.2f}".format(float(info["losses"][pipe_name])))
log_losses[pipe_name] = float(info["losses"][pipe_name])
scores = []
log_scores = {}
for col in score_cols:
score = info["other_scores"].get(col, 0.0)
try:
score = float(score)
except TypeError:
err = Errors.E916.format(name=col, score_type=type(score))
raise ValueError(err) from None
if col != "speed":
score *= 100
scores.append("{0:.2f}".format(score))
log_scores[str(col)] = score
data = (
[info["epoch"], info["step"]]
+ losses
+ scores
+ ["{0:.2f}".format(float(info["score"]))]
)
if output_stream:
# Write to log file per log_step
log_data = {
"epoch": info["epoch"],
"step": info["step"],
"losses": log_losses,
"scores": log_scores,
"score": float(info["score"]),
}
output_stream.write(srsly.json_dumps(log_data) + "\n")
if progress is not None:
progress.close()
if console_output:
write(
msg.row(
data, widths=table_widths, aligns=table_aligns, spacing=spacing
)
)
if progress_bar:
if progress_bar == "train":
total = max_steps
desc = f"Last Eval Epoch: {info['epoch']}"
initial = info["step"]
else:
total = eval_frequency
desc = f"Epoch {info['epoch']+1}"
initial = 0
# Set disable=None, so that it disables on non-TTY
progress = tqdm.tqdm(
total=total,
disable=None,
leave=False,
file=stderr,
initial=initial,
)
progress.set_description(desc)
def finalize() -> None:
if output_stream:
output_stream.close()
return log_step, finalize
return setup_printer