mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	* Added sents property to Span class that returns a generator of sentences the Span belongs to * Added description to Span.sents property * Update test_span to clarify the difference between span.sent and span.sents Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/tests/doc/test_span.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Fix documentation typos in spacy/tokens/span.pyx Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update Span.sents doc string in spacy/tokens/span.pyx Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Parametrized test_span_spans * Corrected Span.sents to check for span-level hook first. Also, made Span.sent respect doc-level sents hook if no span-level hook is provided * Corrected Span ocumentation copy/paste issue * Put back accidentally deleted lines * Fixed formatting in span.pyx * Moved check for SENT_START annotation after user hooks in Span.sents * add version where the property was introduced Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
		
			
				
	
	
		
			609 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			609 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
import numpy
 | 
						|
from numpy.testing import assert_array_equal
 | 
						|
 | 
						|
from spacy.attrs import ORTH, LENGTH
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.tokens import Doc, Span, Token
 | 
						|
from spacy.vocab import Vocab
 | 
						|
from spacy.util import filter_spans
 | 
						|
from thinc.api import get_current_ops
 | 
						|
 | 
						|
from ..util import add_vecs_to_vocab
 | 
						|
from .test_underscore import clean_underscore  # noqa: F401
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def doc(en_tokenizer):
 | 
						|
    # fmt: off
 | 
						|
    text = "This is a sentence. This is another sentence. And a third."
 | 
						|
    heads = [1, 1, 3, 1, 1, 6, 6, 8, 6, 6, 12, 12, 12, 12]
 | 
						|
    deps = ["nsubj", "ROOT", "det", "attr", "punct", "nsubj", "ROOT", "det",
 | 
						|
            "attr", "punct", "ROOT", "det", "npadvmod", "punct"]
 | 
						|
    ents = ["O", "O", "B-ENT", "I-ENT", "I-ENT", "I-ENT", "I-ENT", "O", "O",
 | 
						|
            "O", "O", "O", "O", "O"]
 | 
						|
    # fmt: on
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    lemmas = [t.text for t in tokens]  # this is not correct, just a placeholder
 | 
						|
    spaces = [bool(t.whitespace_) for t in tokens]
 | 
						|
    return Doc(
 | 
						|
        tokens.vocab,
 | 
						|
        words=[t.text for t in tokens],
 | 
						|
        spaces=spaces,
 | 
						|
        heads=heads,
 | 
						|
        deps=deps,
 | 
						|
        ents=ents,
 | 
						|
        lemmas=lemmas,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def doc_not_parsed(en_tokenizer):
 | 
						|
    text = "This is a sentence. This is another sentence. And a third."
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    doc = Doc(tokens.vocab, words=[t.text for t in tokens])
 | 
						|
    return doc
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.issue(1537)
 | 
						|
def test_issue1537():
 | 
						|
    """Test that Span.as_doc() doesn't segfault."""
 | 
						|
    string = "The sky is blue . The man is pink . The dog is purple ."
 | 
						|
    doc = Doc(Vocab(), words=string.split())
 | 
						|
    doc[0].sent_start = True
 | 
						|
    for word in doc[1:]:
 | 
						|
        if word.nbor(-1).text == ".":
 | 
						|
            word.sent_start = True
 | 
						|
        else:
 | 
						|
            word.sent_start = False
 | 
						|
    sents = list(doc.sents)
 | 
						|
    sent0 = sents[0].as_doc()
 | 
						|
    sent1 = sents[1].as_doc()
 | 
						|
    assert isinstance(sent0, Doc)
 | 
						|
    assert isinstance(sent1, Doc)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.issue(1612)
 | 
						|
def test_issue1612(en_tokenizer):
 | 
						|
    """Test that span.orth_ is identical to span.text"""
 | 
						|
    doc = en_tokenizer("The black cat purrs.")
 | 
						|
    span = doc[1:3]
 | 
						|
    assert span.orth_ == span.text
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.issue(3199)
 | 
						|
def test_issue3199():
 | 
						|
    """Test that Span.noun_chunks works correctly if no noun chunks iterator
 | 
						|
    is available. To make this test future-proof, we're constructing a Doc
 | 
						|
    with a new Vocab here and a parse tree to make sure the noun chunks run.
 | 
						|
    """
 | 
						|
    words = ["This", "is", "a", "sentence"]
 | 
						|
    doc = Doc(Vocab(), words=words, heads=[0] * len(words), deps=["dep"] * len(words))
 | 
						|
    with pytest.raises(NotImplementedError):
 | 
						|
        list(doc[0:3].noun_chunks)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.issue(5152)
 | 
						|
def test_issue5152():
 | 
						|
    # Test that the comparison between a Span and a Token, goes well
 | 
						|
    # There was a bug when the number of tokens in the span equaled the number of characters in the token (!)
 | 
						|
    nlp = English()
 | 
						|
    text = nlp("Talk about being boring!")
 | 
						|
    text_var = nlp("Talk of being boring!")
 | 
						|
    y = nlp("Let")
 | 
						|
    span = text[0:3]  # Talk about being
 | 
						|
    span_2 = text[0:3]  # Talk about being
 | 
						|
    span_3 = text_var[0:3]  # Talk of being
 | 
						|
    token = y[0]  # Let
 | 
						|
    with pytest.warns(UserWarning):
 | 
						|
        assert span.similarity(token) == 0.0
 | 
						|
    assert span.similarity(span_2) == 1.0
 | 
						|
    with pytest.warns(UserWarning):
 | 
						|
        assert span_2.similarity(span_3) < 1.0
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.issue(6755)
 | 
						|
def test_issue6755(en_tokenizer):
 | 
						|
    doc = en_tokenizer("This is a magnificent sentence.")
 | 
						|
    span = doc[:0]
 | 
						|
    assert span.text_with_ws == ""
 | 
						|
    assert span.text == ""
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "sentence, start_idx,end_idx,label",
 | 
						|
    [("Welcome to Mumbai, my friend", 11, 17, "GPE")],
 | 
						|
)
 | 
						|
@pytest.mark.issue(6815)
 | 
						|
def test_issue6815_1(sentence, start_idx, end_idx, label):
 | 
						|
    nlp = English()
 | 
						|
    doc = nlp(sentence)
 | 
						|
    span = doc[:].char_span(start_idx, end_idx, label=label)
 | 
						|
    assert span.label_ == label
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "sentence, start_idx,end_idx,kb_id", [("Welcome to Mumbai, my friend", 11, 17, 5)]
 | 
						|
)
 | 
						|
@pytest.mark.issue(6815)
 | 
						|
def test_issue6815_2(sentence, start_idx, end_idx, kb_id):
 | 
						|
    nlp = English()
 | 
						|
    doc = nlp(sentence)
 | 
						|
    span = doc[:].char_span(start_idx, end_idx, kb_id=kb_id)
 | 
						|
    assert span.kb_id == kb_id
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "sentence, start_idx,end_idx,vector",
 | 
						|
    [("Welcome to Mumbai, my friend", 11, 17, numpy.array([0.1, 0.2, 0.3]))],
 | 
						|
)
 | 
						|
@pytest.mark.issue(6815)
 | 
						|
def test_issue6815_3(sentence, start_idx, end_idx, vector):
 | 
						|
    nlp = English()
 | 
						|
    doc = nlp(sentence)
 | 
						|
    span = doc[:].char_span(start_idx, end_idx, vector=vector)
 | 
						|
    assert (span.vector == vector).all()
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "i_sent,i,j,text",
 | 
						|
    [
 | 
						|
        (0, 0, len("This is a"), "This is a"),
 | 
						|
        (1, 0, len("This is another"), "This is another"),
 | 
						|
        (2, len("And "), len("And ") + len("a third"), "a third"),
 | 
						|
        (0, 1, 2, None),
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_char_span(doc, i_sent, i, j, text):
 | 
						|
    sents = list(doc.sents)
 | 
						|
    span = sents[i_sent].char_span(i, j)
 | 
						|
    if not text:
 | 
						|
        assert not span
 | 
						|
    else:
 | 
						|
        assert span.text == text
 | 
						|
 | 
						|
 | 
						|
def test_spans_sent_spans(doc):
 | 
						|
    sents = list(doc.sents)
 | 
						|
    assert sents[0].start == 0
 | 
						|
    assert sents[0].end == 5
 | 
						|
    assert len(sents) == 3
 | 
						|
    assert sum(len(sent) for sent in sents) == len(doc)
 | 
						|
 | 
						|
 | 
						|
def test_spans_root(doc):
 | 
						|
    span = doc[2:4]
 | 
						|
    assert len(span) == 2
 | 
						|
    assert span.text == "a sentence"
 | 
						|
    assert span.root.text == "sentence"
 | 
						|
    assert span.root.head.text == "is"
 | 
						|
 | 
						|
 | 
						|
def test_spans_string_fn(doc):
 | 
						|
    span = doc[0:4]
 | 
						|
    assert len(span) == 4
 | 
						|
    assert span.text == "This is a sentence"
 | 
						|
 | 
						|
 | 
						|
def test_spans_root2(en_tokenizer):
 | 
						|
    text = "through North and South Carolina"
 | 
						|
    heads = [0, 4, 1, 1, 0]
 | 
						|
    deps = ["dep"] * len(heads)
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    doc = Doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps)
 | 
						|
    assert doc[-2:].root.text == "Carolina"
 | 
						|
 | 
						|
 | 
						|
def test_spans_span_sent(doc, doc_not_parsed):
 | 
						|
    """Test span.sent property"""
 | 
						|
    assert len(list(doc.sents))
 | 
						|
    assert doc[:2].sent.root.text == "is"
 | 
						|
    assert doc[:2].sent.text == "This is a sentence."
 | 
						|
    assert doc[6:7].sent.root.left_edge.text == "This"
 | 
						|
    assert doc[0 : len(doc)].sent == list(doc.sents)[0]
 | 
						|
    assert list(doc[0 : len(doc)].sents) == list(doc.sents)
 | 
						|
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        doc_not_parsed[:2].sent
 | 
						|
 | 
						|
    # test on manual sbd
 | 
						|
    doc_not_parsed[0].is_sent_start = True
 | 
						|
    doc_not_parsed[5].is_sent_start = True
 | 
						|
    assert doc_not_parsed[1:3].sent == doc_not_parsed[0:5]
 | 
						|
    assert doc_not_parsed[10:14].sent == doc_not_parsed[5:]
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "start,end,expected_sentence",
 | 
						|
    [
 | 
						|
        (0, 14, "This is"),  # Entire doc
 | 
						|
        (1, 4, "This is"),  # Overlapping with 2 sentences
 | 
						|
        (0, 2, "This is"),  # Beginning of the Doc. Full sentence
 | 
						|
        (0, 1, "This is"),  # Beginning of the Doc. Part of a sentence
 | 
						|
        (10, 14, "And a"),  # End of the Doc. Overlapping with 2 senteces
 | 
						|
        (12, 14, "third."),  # End of the Doc. Full sentence
 | 
						|
        (1, 1, "This is"),  # Empty Span
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_spans_span_sent_user_hooks(doc, start, end, expected_sentence):
 | 
						|
 | 
						|
    # Doc-level sents hook
 | 
						|
    def user_hook(doc):
 | 
						|
        return [doc[ii : ii + 2] for ii in range(0, len(doc), 2)]
 | 
						|
 | 
						|
    doc.user_hooks["sents"] = user_hook
 | 
						|
 | 
						|
    # Make sure doc-level sents hook works
 | 
						|
    assert doc[start:end].sent.text == expected_sentence
 | 
						|
 | 
						|
    # Span-level sent hook
 | 
						|
    doc.user_span_hooks["sent"] = lambda x: x
 | 
						|
    # Now, span=level sent hook overrides the doc-level sents hook
 | 
						|
    assert doc[start:end].sent == doc[start:end]
 | 
						|
 | 
						|
 | 
						|
def test_spans_lca_matrix(en_tokenizer):
 | 
						|
    """Test span's lca matrix generation"""
 | 
						|
    tokens = en_tokenizer("the lazy dog slept")
 | 
						|
    doc = Doc(
 | 
						|
        tokens.vocab,
 | 
						|
        words=[t.text for t in tokens],
 | 
						|
        heads=[2, 2, 3, 3],
 | 
						|
        deps=["dep"] * 4,
 | 
						|
    )
 | 
						|
    lca = doc[:2].get_lca_matrix()
 | 
						|
    assert lca.shape == (2, 2)
 | 
						|
    assert lca[0, 0] == 0  # the & the -> the
 | 
						|
    assert lca[0, 1] == -1  # the & lazy -> dog (out of span)
 | 
						|
    assert lca[1, 0] == -1  # lazy & the -> dog (out of span)
 | 
						|
    assert lca[1, 1] == 1  # lazy & lazy -> lazy
 | 
						|
 | 
						|
    lca = doc[1:].get_lca_matrix()
 | 
						|
    assert lca.shape == (3, 3)
 | 
						|
    assert lca[0, 0] == 0  # lazy & lazy -> lazy
 | 
						|
    assert lca[0, 1] == 1  # lazy & dog -> dog
 | 
						|
    assert lca[0, 2] == 2  # lazy & slept -> slept
 | 
						|
 | 
						|
    lca = doc[2:].get_lca_matrix()
 | 
						|
    assert lca.shape == (2, 2)
 | 
						|
    assert lca[0, 0] == 0  # dog & dog -> dog
 | 
						|
    assert lca[0, 1] == 1  # dog & slept -> slept
 | 
						|
    assert lca[1, 0] == 1  # slept & dog -> slept
 | 
						|
    assert lca[1, 1] == 1  # slept & slept -> slept
 | 
						|
 | 
						|
    # example from Span API docs
 | 
						|
    tokens = en_tokenizer("I like New York in Autumn")
 | 
						|
    doc = Doc(
 | 
						|
        tokens.vocab,
 | 
						|
        words=[t.text for t in tokens],
 | 
						|
        heads=[1, 1, 3, 1, 3, 4],
 | 
						|
        deps=["dep"] * len(tokens),
 | 
						|
    )
 | 
						|
    lca = doc[1:4].get_lca_matrix()
 | 
						|
    assert_array_equal(lca, numpy.asarray([[0, 0, 0], [0, 1, 2], [0, 2, 2]]))
 | 
						|
 | 
						|
 | 
						|
def test_span_similarity_match():
 | 
						|
    doc = Doc(Vocab(), words=["a", "b", "a", "b"])
 | 
						|
    span1 = doc[:2]
 | 
						|
    span2 = doc[2:]
 | 
						|
    with pytest.warns(UserWarning):
 | 
						|
        assert span1.similarity(span2) == 1.0
 | 
						|
        assert span1.similarity(doc) == 0.0
 | 
						|
        assert span1[:1].similarity(doc.vocab["a"]) == 1.0
 | 
						|
 | 
						|
 | 
						|
def test_spans_default_sentiment(en_tokenizer):
 | 
						|
    """Test span.sentiment property's default averaging behaviour"""
 | 
						|
    text = "good stuff bad stuff"
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    tokens.vocab[tokens[0].text].sentiment = 3.0
 | 
						|
    tokens.vocab[tokens[2].text].sentiment = -2.0
 | 
						|
    doc = Doc(tokens.vocab, words=[t.text for t in tokens])
 | 
						|
    assert doc[:2].sentiment == 3.0 / 2
 | 
						|
    assert doc[-2:].sentiment == -2.0 / 2
 | 
						|
    assert doc[:-1].sentiment == (3.0 + -2) / 3.0
 | 
						|
 | 
						|
 | 
						|
def test_spans_override_sentiment(en_tokenizer):
 | 
						|
    """Test span.sentiment property's default averaging behaviour"""
 | 
						|
    text = "good stuff bad stuff"
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    tokens.vocab[tokens[0].text].sentiment = 3.0
 | 
						|
    tokens.vocab[tokens[2].text].sentiment = -2.0
 | 
						|
    doc = Doc(tokens.vocab, words=[t.text for t in tokens])
 | 
						|
    doc.user_span_hooks["sentiment"] = lambda span: 10.0
 | 
						|
    assert doc[:2].sentiment == 10.0
 | 
						|
    assert doc[-2:].sentiment == 10.0
 | 
						|
    assert doc[:-1].sentiment == 10.0
 | 
						|
 | 
						|
 | 
						|
def test_spans_are_hashable(en_tokenizer):
 | 
						|
    """Test spans can be hashed."""
 | 
						|
    text = "good stuff bad stuff"
 | 
						|
    tokens = en_tokenizer(text)
 | 
						|
    span1 = tokens[:2]
 | 
						|
    span2 = tokens[2:4]
 | 
						|
    assert hash(span1) != hash(span2)
 | 
						|
    span3 = tokens[0:2]
 | 
						|
    assert hash(span3) == hash(span1)
 | 
						|
 | 
						|
 | 
						|
def test_spans_by_character(doc):
 | 
						|
    span1 = doc[1:-2]
 | 
						|
 | 
						|
    # default and specified alignment mode "strict"
 | 
						|
    span2 = doc.char_span(span1.start_char, span1.end_char, label="GPE")
 | 
						|
    assert span1.start_char == span2.start_char
 | 
						|
    assert span1.end_char == span2.end_char
 | 
						|
    assert span2.label_ == "GPE"
 | 
						|
 | 
						|
    span2 = doc.char_span(
 | 
						|
        span1.start_char, span1.end_char, label="GPE", alignment_mode="strict"
 | 
						|
    )
 | 
						|
    assert span1.start_char == span2.start_char
 | 
						|
    assert span1.end_char == span2.end_char
 | 
						|
    assert span2.label_ == "GPE"
 | 
						|
 | 
						|
    # alignment mode "contract"
 | 
						|
    span2 = doc.char_span(
 | 
						|
        span1.start_char - 3, span1.end_char, label="GPE", alignment_mode="contract"
 | 
						|
    )
 | 
						|
    assert span1.start_char == span2.start_char
 | 
						|
    assert span1.end_char == span2.end_char
 | 
						|
    assert span2.label_ == "GPE"
 | 
						|
 | 
						|
    # alignment mode "expand"
 | 
						|
    span2 = doc.char_span(
 | 
						|
        span1.start_char + 1, span1.end_char, label="GPE", alignment_mode="expand"
 | 
						|
    )
 | 
						|
    assert span1.start_char == span2.start_char
 | 
						|
    assert span1.end_char == span2.end_char
 | 
						|
    assert span2.label_ == "GPE"
 | 
						|
 | 
						|
    # unsupported alignment mode
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        span2 = doc.char_span(
 | 
						|
            span1.start_char + 1, span1.end_char, label="GPE", alignment_mode="unk"
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
def test_span_to_array(doc):
 | 
						|
    span = doc[1:-2]
 | 
						|
    arr = span.to_array([ORTH, LENGTH])
 | 
						|
    assert arr.shape == (len(span), 2)
 | 
						|
    assert arr[0, 0] == span[0].orth
 | 
						|
    assert arr[0, 1] == len(span[0])
 | 
						|
 | 
						|
 | 
						|
def test_span_as_doc(doc):
 | 
						|
    span = doc[4:10]
 | 
						|
    span_doc = span.as_doc()
 | 
						|
    assert span.text == span_doc.text.strip()
 | 
						|
    assert isinstance(span_doc, doc.__class__)
 | 
						|
    assert span_doc is not doc
 | 
						|
    assert span_doc[0].idx == 0
 | 
						|
 | 
						|
    # partial initial entity is removed
 | 
						|
    assert len(span_doc.ents) == 0
 | 
						|
 | 
						|
    # full entity is preserved
 | 
						|
    span_doc = doc[2:10].as_doc()
 | 
						|
    assert len(span_doc.ents) == 1
 | 
						|
 | 
						|
    # partial final entity is removed
 | 
						|
    span_doc = doc[0:5].as_doc()
 | 
						|
    assert len(span_doc.ents) == 0
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.usefixtures("clean_underscore")
 | 
						|
def test_span_as_doc_user_data(doc):
 | 
						|
    """Test that the user_data can be preserved (but not by default)."""
 | 
						|
    my_key = "my_info"
 | 
						|
    my_value = 342
 | 
						|
    doc.user_data[my_key] = my_value
 | 
						|
    Token.set_extension("is_x", default=False)
 | 
						|
    doc[7]._.is_x = True
 | 
						|
 | 
						|
    span = doc[4:10]
 | 
						|
    span_doc_with = span.as_doc(copy_user_data=True)
 | 
						|
    span_doc_without = span.as_doc()
 | 
						|
 | 
						|
    assert doc.user_data.get(my_key, None) is my_value
 | 
						|
    assert span_doc_with.user_data.get(my_key, None) is my_value
 | 
						|
    assert span_doc_without.user_data.get(my_key, None) is None
 | 
						|
    for i in range(len(span_doc_with)):
 | 
						|
        if i != 3:
 | 
						|
            assert span_doc_with[i]._.is_x is False
 | 
						|
        else:
 | 
						|
            assert span_doc_with[i]._.is_x is True
 | 
						|
    assert not any([t._.is_x for t in span_doc_without])
 | 
						|
 | 
						|
 | 
						|
def test_span_string_label_kb_id(doc):
 | 
						|
    span = Span(doc, 0, 1, label="hello", kb_id="Q342")
 | 
						|
    assert span.label_ == "hello"
 | 
						|
    assert span.label == doc.vocab.strings["hello"]
 | 
						|
    assert span.kb_id_ == "Q342"
 | 
						|
    assert span.kb_id == doc.vocab.strings["Q342"]
 | 
						|
 | 
						|
 | 
						|
def test_span_attrs_writable(doc):
 | 
						|
    span = Span(doc, 0, 1)
 | 
						|
    span.label_ = "label"
 | 
						|
    span.kb_id_ = "kb_id"
 | 
						|
 | 
						|
 | 
						|
def test_span_ents_property(doc):
 | 
						|
    doc.ents = [
 | 
						|
        (doc.vocab.strings["PRODUCT"], 0, 1),
 | 
						|
        (doc.vocab.strings["PRODUCT"], 7, 8),
 | 
						|
        (doc.vocab.strings["PRODUCT"], 11, 14),
 | 
						|
    ]
 | 
						|
    assert len(list(doc.ents)) == 3
 | 
						|
    sentences = list(doc.sents)
 | 
						|
    assert len(sentences) == 3
 | 
						|
    assert len(sentences[0].ents) == 1
 | 
						|
    # First sentence, also tests start of sentence
 | 
						|
    assert sentences[0].ents[0].text == "This"
 | 
						|
    assert sentences[0].ents[0].label_ == "PRODUCT"
 | 
						|
    assert sentences[0].ents[0].start == 0
 | 
						|
    assert sentences[0].ents[0].end == 1
 | 
						|
    # Second sentence
 | 
						|
    assert len(sentences[1].ents) == 1
 | 
						|
    assert sentences[1].ents[0].text == "another"
 | 
						|
    assert sentences[1].ents[0].label_ == "PRODUCT"
 | 
						|
    assert sentences[1].ents[0].start == 7
 | 
						|
    assert sentences[1].ents[0].end == 8
 | 
						|
    # Third sentence ents, Also tests end of sentence
 | 
						|
    assert sentences[2].ents[0].text == "a third."
 | 
						|
    assert sentences[2].ents[0].label_ == "PRODUCT"
 | 
						|
    assert sentences[2].ents[0].start == 11
 | 
						|
    assert sentences[2].ents[0].end == 14
 | 
						|
 | 
						|
 | 
						|
def test_filter_spans(doc):
 | 
						|
    # Test filtering duplicates
 | 
						|
    spans = [doc[1:4], doc[6:8], doc[1:4], doc[10:14]]
 | 
						|
    filtered = filter_spans(spans)
 | 
						|
    assert len(filtered) == 3
 | 
						|
    assert filtered[0].start == 1 and filtered[0].end == 4
 | 
						|
    assert filtered[1].start == 6 and filtered[1].end == 8
 | 
						|
    assert filtered[2].start == 10 and filtered[2].end == 14
 | 
						|
    # Test filtering overlaps with longest preference
 | 
						|
    spans = [doc[1:4], doc[1:3], doc[5:10], doc[7:9], doc[1:4]]
 | 
						|
    filtered = filter_spans(spans)
 | 
						|
    assert len(filtered) == 2
 | 
						|
    assert len(filtered[0]) == 3
 | 
						|
    assert len(filtered[1]) == 5
 | 
						|
    assert filtered[0].start == 1 and filtered[0].end == 4
 | 
						|
    assert filtered[1].start == 5 and filtered[1].end == 10
 | 
						|
    # Test filtering overlaps with earlier preference for identical length
 | 
						|
    spans = [doc[1:4], doc[2:5], doc[5:10], doc[7:9], doc[1:4]]
 | 
						|
    filtered = filter_spans(spans)
 | 
						|
    assert len(filtered) == 2
 | 
						|
    assert len(filtered[0]) == 3
 | 
						|
    assert len(filtered[1]) == 5
 | 
						|
    assert filtered[0].start == 1 and filtered[0].end == 4
 | 
						|
    assert filtered[1].start == 5 and filtered[1].end == 10
 | 
						|
 | 
						|
 | 
						|
def test_span_eq_hash(doc, doc_not_parsed):
 | 
						|
    assert doc[0:2] == doc[0:2]
 | 
						|
    assert doc[0:2] != doc[1:3]
 | 
						|
    assert doc[0:2] != doc_not_parsed[0:2]
 | 
						|
    assert hash(doc[0:2]) == hash(doc[0:2])
 | 
						|
    assert hash(doc[0:2]) != hash(doc[1:3])
 | 
						|
    assert hash(doc[0:2]) != hash(doc_not_parsed[0:2])
 | 
						|
 | 
						|
    # check that an out-of-bounds is not equivalent to the span of the full doc
 | 
						|
    assert doc[0 : len(doc)] != doc[len(doc) : len(doc) + 1]
 | 
						|
 | 
						|
 | 
						|
def test_span_boundaries(doc):
 | 
						|
    start = 1
 | 
						|
    end = 5
 | 
						|
    span = doc[start:end]
 | 
						|
    for i in range(start, end):
 | 
						|
        assert span[i - start] == doc[i]
 | 
						|
    with pytest.raises(IndexError):
 | 
						|
        span[-5]
 | 
						|
    with pytest.raises(IndexError):
 | 
						|
        span[5]
 | 
						|
 | 
						|
    empty_span_0 = doc[0:0]
 | 
						|
    assert empty_span_0.text == ""
 | 
						|
    assert empty_span_0.start == 0
 | 
						|
    assert empty_span_0.end == 0
 | 
						|
    assert empty_span_0.start_char == 0
 | 
						|
    assert empty_span_0.end_char == 0
 | 
						|
 | 
						|
    empty_span_1 = doc[1:1]
 | 
						|
    assert empty_span_1.text == ""
 | 
						|
    assert empty_span_1.start == 1
 | 
						|
    assert empty_span_1.end == 1
 | 
						|
    assert empty_span_1.start_char == empty_span_1.end_char
 | 
						|
 | 
						|
    oob_span_start = doc[-len(doc) - 1 : -len(doc) - 10]
 | 
						|
    assert oob_span_start.text == ""
 | 
						|
    assert oob_span_start.start == 0
 | 
						|
    assert oob_span_start.end == 0
 | 
						|
    assert oob_span_start.start_char == 0
 | 
						|
    assert oob_span_start.end_char == 0
 | 
						|
 | 
						|
    oob_span_end = doc[len(doc) + 1 : len(doc) + 10]
 | 
						|
    assert oob_span_end.text == ""
 | 
						|
    assert oob_span_end.start == len(doc)
 | 
						|
    assert oob_span_end.end == len(doc)
 | 
						|
    assert oob_span_end.start_char == len(doc.text)
 | 
						|
    assert oob_span_end.end_char == len(doc.text)
 | 
						|
 | 
						|
 | 
						|
def test_span_lemma(doc):
 | 
						|
    # span lemmas should have the same number of spaces as the span
 | 
						|
    sp = doc[1:5]
 | 
						|
    assert len(sp.text.split(" ")) == len(sp.lemma_.split(" "))
 | 
						|
 | 
						|
 | 
						|
def test_sent(en_tokenizer):
 | 
						|
    doc = en_tokenizer("Check span.sent raises error if doc is not sentencized.")
 | 
						|
    span = doc[1:3]
 | 
						|
    assert not span.doc.has_annotation("SENT_START")
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        span.sent
 | 
						|
 | 
						|
 | 
						|
def test_span_with_vectors(doc):
 | 
						|
    ops = get_current_ops()
 | 
						|
    prev_vectors = doc.vocab.vectors
 | 
						|
    vectors = [
 | 
						|
        ("apple", ops.asarray([1, 2, 3])),
 | 
						|
        ("orange", ops.asarray([-1, -2, -3])),
 | 
						|
        ("And", ops.asarray([-1, -1, -1])),
 | 
						|
        ("juice", ops.asarray([5, 5, 10])),
 | 
						|
        ("pie", ops.asarray([7, 6.3, 8.9])),
 | 
						|
    ]
 | 
						|
    add_vecs_to_vocab(doc.vocab, vectors)
 | 
						|
    # 0-length span
 | 
						|
    assert_array_equal(ops.to_numpy(doc[0:0].vector), numpy.zeros((3,)))
 | 
						|
    # longer span with no vector
 | 
						|
    assert_array_equal(ops.to_numpy(doc[0:4].vector), numpy.zeros((3,)))
 | 
						|
    # single-token span with vector
 | 
						|
    assert_array_equal(ops.to_numpy(doc[10:11].vector), [-1, -1, -1])
 | 
						|
    doc.vocab.vectors = prev_vectors
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "start,end,expected_sentences,expected_sentences_with_hook",
 | 
						|
    [
 | 
						|
        (0, 14, 3, 7),  # Entire doc
 | 
						|
        (3, 6, 2, 2),  # Overlapping with 2 sentences
 | 
						|
        (0, 4, 1, 2),  # Beginning of the Doc. Full sentence
 | 
						|
        (0, 3, 1, 2),  # Beginning of the Doc. Part of a sentence
 | 
						|
        (9, 14, 2, 3),  # End of the Doc. Overlapping with 2 senteces
 | 
						|
        (10, 14, 1, 2),  # End of the Doc. Full sentence
 | 
						|
        (11, 14, 1, 2),  # End of the Doc. Partial sentence
 | 
						|
        (0, 0, 1, 1),  # Empty Span
 | 
						|
    ],
 | 
						|
)
 | 
						|
def test_span_sents(doc, start, end, expected_sentences, expected_sentences_with_hook):
 | 
						|
 | 
						|
    assert len(list(doc[start:end].sents)) == expected_sentences
 | 
						|
 | 
						|
    def user_hook(doc):
 | 
						|
        return [doc[ii : ii + 2] for ii in range(0, len(doc), 2)]
 | 
						|
 | 
						|
    doc.user_hooks["sents"] = user_hook
 | 
						|
 | 
						|
    assert len(list(doc[start:end].sents)) == expected_sentences_with_hook
 | 
						|
 | 
						|
    doc.user_span_hooks["sents"] = lambda x: [x]
 | 
						|
 | 
						|
    assert list(doc[start:end].sents)[0] == doc[start:end]
 | 
						|
    assert len(list(doc[start:end].sents)) == 1
 | 
						|
 | 
						|
 | 
						|
def test_span_sents_not_parsed(doc_not_parsed):
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        list(Span(doc_not_parsed, 0, 3).sents)
 |