mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			1110 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1110 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from typing import Any, Dict, Iterable, List, Optional, Sequence, Set, Tuple, Union
 | 
						|
from typing import cast, overload
 | 
						|
from pathlib import Path
 | 
						|
from collections import Counter
 | 
						|
import sys
 | 
						|
import srsly
 | 
						|
from wasabi import Printer, MESSAGES, msg
 | 
						|
import typer
 | 
						|
import math
 | 
						|
 | 
						|
from ._util import app, Arg, Opt, show_validation_error, parse_config_overrides
 | 
						|
from ._util import import_code, debug_cli
 | 
						|
from ..training import Example, remove_bilu_prefix
 | 
						|
from ..training.initialize import get_sourced_components
 | 
						|
from ..schemas import ConfigSchemaTraining
 | 
						|
from ..pipeline._parser_internals import nonproj
 | 
						|
from ..pipeline._parser_internals.nonproj import DELIMITER
 | 
						|
from ..pipeline import Morphologizer, SpanCategorizer
 | 
						|
from ..morphology import Morphology
 | 
						|
from ..language import Language
 | 
						|
from ..util import registry, resolve_dot_names
 | 
						|
from ..compat import Literal
 | 
						|
from ..vectors import Mode as VectorsMode
 | 
						|
from .. import util
 | 
						|
 | 
						|
 | 
						|
# Minimum number of expected occurrences of NER label in data to train new label
 | 
						|
NEW_LABEL_THRESHOLD = 50
 | 
						|
# Minimum number of expected occurrences of dependency labels
 | 
						|
DEP_LABEL_THRESHOLD = 20
 | 
						|
# Minimum number of expected examples to train a new pipeline
 | 
						|
BLANK_MODEL_MIN_THRESHOLD = 100
 | 
						|
BLANK_MODEL_THRESHOLD = 2000
 | 
						|
# Arbitrary threshold where SpanCat performs well
 | 
						|
SPAN_DISTINCT_THRESHOLD = 1
 | 
						|
# Arbitrary threshold where SpanCat performs well
 | 
						|
BOUNDARY_DISTINCT_THRESHOLD = 1
 | 
						|
# Arbitrary threshold for filtering span lengths during reporting (percentage)
 | 
						|
SPAN_LENGTH_THRESHOLD_PERCENTAGE = 90
 | 
						|
 | 
						|
 | 
						|
@debug_cli.command(
 | 
						|
    "data", context_settings={"allow_extra_args": True, "ignore_unknown_options": True}
 | 
						|
)
 | 
						|
@app.command(
 | 
						|
    "debug-data",
 | 
						|
    context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
 | 
						|
    hidden=True,  # hide this from main CLI help but still allow it to work with warning
 | 
						|
)
 | 
						|
def debug_data_cli(
 | 
						|
    # fmt: off
 | 
						|
    ctx: typer.Context,  # This is only used to read additional arguments
 | 
						|
    config_path: Path = Arg(..., help="Path to config file", exists=True, allow_dash=True),
 | 
						|
    code_path: Optional[Path] = Opt(None, "--code-path", "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
 | 
						|
    ignore_warnings: bool = Opt(False, "--ignore-warnings", "-IW", help="Ignore warnings, only show stats and errors"),
 | 
						|
    verbose: bool = Opt(False, "--verbose", "-V", help="Print additional information and explanations"),
 | 
						|
    no_format: bool = Opt(False, "--no-format", "-NF", help="Don't pretty-print the results"),
 | 
						|
    # fmt: on
 | 
						|
):
 | 
						|
    """
 | 
						|
    Analyze, debug and validate your training and development data. Outputs
 | 
						|
    useful stats, and can help you find problems like invalid entity annotations,
 | 
						|
    cyclic dependencies, low data labels and more.
 | 
						|
 | 
						|
    DOCS: https://spacy.io/api/cli#debug-data
 | 
						|
    """
 | 
						|
    if ctx.command.name == "debug-data":
 | 
						|
        msg.warn(
 | 
						|
            "The debug-data command is now available via the 'debug data' "
 | 
						|
            "subcommand (without the hyphen). You can run python -m spacy debug "
 | 
						|
            "--help for an overview of the other available debugging commands."
 | 
						|
        )
 | 
						|
    overrides = parse_config_overrides(ctx.args)
 | 
						|
    import_code(code_path)
 | 
						|
    debug_data(
 | 
						|
        config_path,
 | 
						|
        config_overrides=overrides,
 | 
						|
        ignore_warnings=ignore_warnings,
 | 
						|
        verbose=verbose,
 | 
						|
        no_format=no_format,
 | 
						|
        silent=False,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def debug_data(
 | 
						|
    config_path: Path,
 | 
						|
    *,
 | 
						|
    config_overrides: Dict[str, Any] = {},
 | 
						|
    ignore_warnings: bool = False,
 | 
						|
    verbose: bool = False,
 | 
						|
    no_format: bool = True,
 | 
						|
    silent: bool = True,
 | 
						|
):
 | 
						|
    msg = Printer(
 | 
						|
        no_print=silent, pretty=not no_format, ignore_warnings=ignore_warnings
 | 
						|
    )
 | 
						|
    # Make sure all files and paths exists if they are needed
 | 
						|
    with show_validation_error(config_path):
 | 
						|
        cfg = util.load_config(config_path, overrides=config_overrides)
 | 
						|
        nlp = util.load_model_from_config(cfg)
 | 
						|
        config = nlp.config.interpolate()
 | 
						|
        T = registry.resolve(config["training"], schema=ConfigSchemaTraining)
 | 
						|
    # Use original config here, not resolved version
 | 
						|
    sourced_components = get_sourced_components(cfg)
 | 
						|
    frozen_components = T["frozen_components"]
 | 
						|
    resume_components = [p for p in sourced_components if p not in frozen_components]
 | 
						|
    pipeline = nlp.pipe_names
 | 
						|
    factory_names = [nlp.get_pipe_meta(pipe).factory for pipe in nlp.pipe_names]
 | 
						|
    msg.divider("Data file validation")
 | 
						|
 | 
						|
    # Create the gold corpus to be able to better analyze data
 | 
						|
    dot_names = [T["train_corpus"], T["dev_corpus"]]
 | 
						|
    train_corpus, dev_corpus = resolve_dot_names(config, dot_names)
 | 
						|
 | 
						|
    nlp.initialize(lambda: train_corpus(nlp))
 | 
						|
    msg.good("Pipeline can be initialized with data")
 | 
						|
 | 
						|
    train_dataset = list(train_corpus(nlp))
 | 
						|
    dev_dataset = list(dev_corpus(nlp))
 | 
						|
    msg.good("Corpus is loadable")
 | 
						|
 | 
						|
    # Create all gold data here to avoid iterating over the train_dataset constantly
 | 
						|
    gold_train_data = _compile_gold(train_dataset, factory_names, nlp, make_proj=True)
 | 
						|
    gold_train_unpreprocessed_data = _compile_gold(
 | 
						|
        train_dataset, factory_names, nlp, make_proj=False
 | 
						|
    )
 | 
						|
    gold_dev_data = _compile_gold(dev_dataset, factory_names, nlp, make_proj=True)
 | 
						|
 | 
						|
    train_texts = gold_train_data["texts"]
 | 
						|
    dev_texts = gold_dev_data["texts"]
 | 
						|
    frozen_components = T["frozen_components"]
 | 
						|
 | 
						|
    msg.divider("Training stats")
 | 
						|
    msg.text(f"Language: {nlp.lang}")
 | 
						|
    msg.text(f"Training pipeline: {', '.join(pipeline)}")
 | 
						|
    if resume_components:
 | 
						|
        msg.text(f"Components from other pipelines: {', '.join(resume_components)}")
 | 
						|
    if frozen_components:
 | 
						|
        msg.text(f"Frozen components: {', '.join(frozen_components)}")
 | 
						|
    msg.text(f"{len(train_dataset)} training docs")
 | 
						|
    msg.text(f"{len(dev_dataset)} evaluation docs")
 | 
						|
 | 
						|
    if not len(gold_dev_data):
 | 
						|
        msg.fail("No evaluation docs")
 | 
						|
    overlap = len(train_texts.intersection(dev_texts))
 | 
						|
    if overlap:
 | 
						|
        msg.warn(f"{overlap} training examples also in evaluation data")
 | 
						|
    else:
 | 
						|
        msg.good("No overlap between training and evaluation data")
 | 
						|
    # TODO: make this feedback more fine-grained and report on updated
 | 
						|
    # components vs. blank components
 | 
						|
    if not resume_components and len(train_dataset) < BLANK_MODEL_THRESHOLD:
 | 
						|
        text = f"Low number of examples to train a new pipeline ({len(train_dataset)})"
 | 
						|
        if len(train_dataset) < BLANK_MODEL_MIN_THRESHOLD:
 | 
						|
            msg.fail(text)
 | 
						|
        else:
 | 
						|
            msg.warn(text)
 | 
						|
        msg.text(
 | 
						|
            f"It's recommended to use at least {BLANK_MODEL_THRESHOLD} examples "
 | 
						|
            f"(minimum {BLANK_MODEL_MIN_THRESHOLD})",
 | 
						|
            show=verbose,
 | 
						|
        )
 | 
						|
 | 
						|
    msg.divider("Vocab & Vectors")
 | 
						|
    n_words = gold_train_data["n_words"]
 | 
						|
    msg.info(
 | 
						|
        f"{n_words} total word(s) in the data ({len(gold_train_data['words'])} unique)"
 | 
						|
    )
 | 
						|
    if gold_train_data["n_misaligned_words"] > 0:
 | 
						|
        n_misaligned = gold_train_data["n_misaligned_words"]
 | 
						|
        msg.warn(f"{n_misaligned} misaligned tokens in the training data")
 | 
						|
    if gold_dev_data["n_misaligned_words"] > 0:
 | 
						|
        n_misaligned = gold_dev_data["n_misaligned_words"]
 | 
						|
        msg.warn(f"{n_misaligned} misaligned tokens in the dev data")
 | 
						|
    most_common_words = gold_train_data["words"].most_common(10)
 | 
						|
    msg.text(
 | 
						|
        f"10 most common words: {_format_labels(most_common_words, counts=True)}",
 | 
						|
        show=verbose,
 | 
						|
    )
 | 
						|
    if len(nlp.vocab.vectors):
 | 
						|
        if nlp.vocab.vectors.mode == VectorsMode.floret:
 | 
						|
            msg.info(
 | 
						|
                f"floret vectors with {len(nlp.vocab.vectors)} vectors, "
 | 
						|
                f"{nlp.vocab.vectors_length} dimensions, "
 | 
						|
                f"{nlp.vocab.vectors.minn}-{nlp.vocab.vectors.maxn} char "
 | 
						|
                f"n-gram subwords"
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            msg.info(
 | 
						|
                f"{len(nlp.vocab.vectors)} vectors ({nlp.vocab.vectors.n_keys} "
 | 
						|
                f"unique keys, {nlp.vocab.vectors_length} dimensions)"
 | 
						|
            )
 | 
						|
            n_missing_vectors = sum(gold_train_data["words_missing_vectors"].values())
 | 
						|
            msg.warn(
 | 
						|
                "{} words in training data without vectors ({:.0f}%)".format(
 | 
						|
                    n_missing_vectors,
 | 
						|
                    100 * (n_missing_vectors / gold_train_data["n_words"]),
 | 
						|
                ),
 | 
						|
            )
 | 
						|
            msg.text(
 | 
						|
                "10 most common words without vectors: {}".format(
 | 
						|
                    _format_labels(
 | 
						|
                        gold_train_data["words_missing_vectors"].most_common(10),
 | 
						|
                        counts=True,
 | 
						|
                    )
 | 
						|
                ),
 | 
						|
                show=verbose,
 | 
						|
            )
 | 
						|
    else:
 | 
						|
        msg.info("No word vectors present in the package")
 | 
						|
 | 
						|
    if "spancat" in factory_names:
 | 
						|
        model_labels_spancat = _get_labels_from_spancat(nlp)
 | 
						|
        has_low_data_warning = False
 | 
						|
        has_no_neg_warning = False
 | 
						|
 | 
						|
        msg.divider("Span Categorization")
 | 
						|
        msg.table(model_labels_spancat, header=["Spans Key", "Labels"], divider=True)
 | 
						|
 | 
						|
        msg.text("Label counts in train data: ", show=verbose)
 | 
						|
        for spans_key, data_labels in gold_train_data["spancat"].items():
 | 
						|
            msg.text(
 | 
						|
                f"Key: {spans_key}, {_format_labels(data_labels.items(), counts=True)}",
 | 
						|
                show=verbose,
 | 
						|
            )
 | 
						|
        # Data checks: only take the spans keys in the actual spancat components
 | 
						|
        data_labels_in_component = {
 | 
						|
            spans_key: gold_train_data["spancat"][spans_key]
 | 
						|
            for spans_key in model_labels_spancat.keys()
 | 
						|
        }
 | 
						|
        for spans_key, data_labels in data_labels_in_component.items():
 | 
						|
            for label, count in data_labels.items():
 | 
						|
                # Check for missing labels
 | 
						|
                spans_key_in_model = spans_key in model_labels_spancat.keys()
 | 
						|
                if (spans_key_in_model) and (
 | 
						|
                    label not in model_labels_spancat[spans_key]
 | 
						|
                ):
 | 
						|
                    msg.warn(
 | 
						|
                        f"Label '{label}' is not present in the model labels of key '{spans_key}'. "
 | 
						|
                        "Performance may degrade after training."
 | 
						|
                    )
 | 
						|
                # Check for low number of examples per label
 | 
						|
                if count <= NEW_LABEL_THRESHOLD:
 | 
						|
                    msg.warn(
 | 
						|
                        f"Low number of examples for label '{label}' in key '{spans_key}' ({count})"
 | 
						|
                    )
 | 
						|
                    has_low_data_warning = True
 | 
						|
                # Check for negative examples
 | 
						|
                with msg.loading("Analyzing label distribution..."):
 | 
						|
                    neg_docs = _get_examples_without_label(
 | 
						|
                        train_dataset, label, "spancat", spans_key
 | 
						|
                    )
 | 
						|
                if neg_docs == 0:
 | 
						|
                    msg.warn(f"No examples for texts WITHOUT new label '{label}'")
 | 
						|
                    has_no_neg_warning = True
 | 
						|
 | 
						|
            with msg.loading("Obtaining span characteristics..."):
 | 
						|
                span_characteristics = _get_span_characteristics(
 | 
						|
                    train_dataset, gold_train_data, spans_key
 | 
						|
                )
 | 
						|
 | 
						|
            msg.info(f"Span characteristics for spans_key '{spans_key}'")
 | 
						|
            msg.info("SD = Span Distinctiveness, BD = Boundary Distinctiveness")
 | 
						|
            _print_span_characteristics(span_characteristics)
 | 
						|
 | 
						|
            _span_freqs = _get_spans_length_freq_dist(
 | 
						|
                gold_train_data["spans_length"][spans_key]
 | 
						|
            )
 | 
						|
            _filtered_span_freqs = _filter_spans_length_freq_dist(
 | 
						|
                _span_freqs, threshold=SPAN_LENGTH_THRESHOLD_PERCENTAGE
 | 
						|
            )
 | 
						|
 | 
						|
            msg.info(
 | 
						|
                f"Over {SPAN_LENGTH_THRESHOLD_PERCENTAGE}% of spans have lengths of 1 -- "
 | 
						|
                f"{max(_filtered_span_freqs.keys())} "
 | 
						|
                f"(min={span_characteristics['min_length']}, max={span_characteristics['max_length']}). "
 | 
						|
                f"The most common span lengths are: {_format_freqs(_filtered_span_freqs)}. "
 | 
						|
                "If you are using the n-gram suggester, note that omitting "
 | 
						|
                "infrequent n-gram lengths can greatly improve speed and "
 | 
						|
                "memory usage."
 | 
						|
            )
 | 
						|
 | 
						|
            msg.text(
 | 
						|
                f"Full distribution of span lengths: {_format_freqs(_span_freqs)}",
 | 
						|
                show=verbose,
 | 
						|
            )
 | 
						|
 | 
						|
            # Add report regarding span characteristics
 | 
						|
            if span_characteristics["avg_sd"] < SPAN_DISTINCT_THRESHOLD:
 | 
						|
                msg.warn("Spans may not be distinct from the rest of the corpus")
 | 
						|
            else:
 | 
						|
                msg.good("Spans are distinct from the rest of the corpus")
 | 
						|
 | 
						|
            p_spans = span_characteristics["p_spans"].values()
 | 
						|
            all_span_tokens: Counter = sum(p_spans, Counter())
 | 
						|
            most_common_spans = [w for w, _ in all_span_tokens.most_common(10)]
 | 
						|
            msg.text(
 | 
						|
                "10 most common span tokens: {}".format(
 | 
						|
                    _format_labels(most_common_spans)
 | 
						|
                ),
 | 
						|
                show=verbose,
 | 
						|
            )
 | 
						|
 | 
						|
            # Add report regarding span boundary characteristics
 | 
						|
            if span_characteristics["avg_bd"] < BOUNDARY_DISTINCT_THRESHOLD:
 | 
						|
                msg.warn("Boundary tokens are not distinct from the rest of the corpus")
 | 
						|
            else:
 | 
						|
                msg.good("Boundary tokens are distinct from the rest of the corpus")
 | 
						|
 | 
						|
            p_bounds = span_characteristics["p_bounds"].values()
 | 
						|
            all_span_bound_tokens: Counter = sum(p_bounds, Counter())
 | 
						|
            most_common_bounds = [w for w, _ in all_span_bound_tokens.most_common(10)]
 | 
						|
            msg.text(
 | 
						|
                "10 most common span boundary tokens: {}".format(
 | 
						|
                    _format_labels(most_common_bounds)
 | 
						|
                ),
 | 
						|
                show=verbose,
 | 
						|
            )
 | 
						|
 | 
						|
        if has_low_data_warning:
 | 
						|
            msg.text(
 | 
						|
                f"To train a new span type, your data should include at "
 | 
						|
                f"least {NEW_LABEL_THRESHOLD} instances of the new label",
 | 
						|
                show=verbose,
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            msg.good("Good amount of examples for all labels")
 | 
						|
 | 
						|
        if has_no_neg_warning:
 | 
						|
            msg.text(
 | 
						|
                "Training data should always include examples of spans "
 | 
						|
                "in context, as well as examples without a given span "
 | 
						|
                "type.",
 | 
						|
                show=verbose,
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            msg.good("Examples without ocurrences available for all labels")
 | 
						|
 | 
						|
    if "ner" in factory_names:
 | 
						|
        # Get all unique NER labels present in the data
 | 
						|
        labels = set(
 | 
						|
            label for label in gold_train_data["ner"] if label not in ("O", "-", None)
 | 
						|
        )
 | 
						|
        label_counts = gold_train_data["ner"]
 | 
						|
        model_labels = _get_labels_from_model(nlp, "ner")
 | 
						|
        has_low_data_warning = False
 | 
						|
        has_no_neg_warning = False
 | 
						|
        has_ws_ents_error = False
 | 
						|
        has_boundary_cross_ents_warning = False
 | 
						|
 | 
						|
        msg.divider("Named Entity Recognition")
 | 
						|
        msg.info(f"{len(model_labels)} label(s)")
 | 
						|
        missing_values = label_counts["-"]
 | 
						|
        msg.text(f"{missing_values} missing value(s) (tokens with '-' label)")
 | 
						|
        for label in labels:
 | 
						|
            if len(label) == 0:
 | 
						|
                msg.fail("Empty label found in train data")
 | 
						|
        labels_with_counts = [
 | 
						|
            (label, count)
 | 
						|
            for label, count in label_counts.most_common()
 | 
						|
            if label != "-"
 | 
						|
        ]
 | 
						|
        labels_with_counts = _format_labels(labels_with_counts, counts=True)
 | 
						|
        msg.text(f"Labels in train data: {labels_with_counts}", show=verbose)
 | 
						|
        missing_labels = model_labels - labels
 | 
						|
        if missing_labels:
 | 
						|
            msg.warn(
 | 
						|
                "Some model labels are not present in the train data. The "
 | 
						|
                "model performance may be degraded for these labels after "
 | 
						|
                f"training: {_format_labels(missing_labels)}."
 | 
						|
            )
 | 
						|
        if gold_train_data["ws_ents"]:
 | 
						|
            msg.fail(f"{gold_train_data['ws_ents']} invalid whitespace entity spans")
 | 
						|
            has_ws_ents_error = True
 | 
						|
 | 
						|
        for label in labels:
 | 
						|
            if label_counts[label] <= NEW_LABEL_THRESHOLD:
 | 
						|
                msg.warn(
 | 
						|
                    f"Low number of examples for label '{label}' ({label_counts[label]})"
 | 
						|
                )
 | 
						|
                has_low_data_warning = True
 | 
						|
 | 
						|
                with msg.loading("Analyzing label distribution..."):
 | 
						|
                    neg_docs = _get_examples_without_label(train_dataset, label, "ner")
 | 
						|
                if neg_docs == 0:
 | 
						|
                    msg.warn(f"No examples for texts WITHOUT new label '{label}'")
 | 
						|
                    has_no_neg_warning = True
 | 
						|
 | 
						|
        if gold_train_data["boundary_cross_ents"]:
 | 
						|
            msg.warn(
 | 
						|
                f"{gold_train_data['boundary_cross_ents']} entity span(s) crossing sentence boundaries"
 | 
						|
            )
 | 
						|
            has_boundary_cross_ents_warning = True
 | 
						|
 | 
						|
        if not has_low_data_warning:
 | 
						|
            msg.good("Good amount of examples for all labels")
 | 
						|
        if not has_no_neg_warning:
 | 
						|
            msg.good("Examples without occurrences available for all labels")
 | 
						|
        if not has_ws_ents_error:
 | 
						|
            msg.good("No entities consisting of or starting/ending with whitespace")
 | 
						|
        if not has_boundary_cross_ents_warning:
 | 
						|
            msg.good("No entities crossing sentence boundaries")
 | 
						|
 | 
						|
        if has_low_data_warning:
 | 
						|
            msg.text(
 | 
						|
                f"To train a new entity type, your data should include at "
 | 
						|
                f"least {NEW_LABEL_THRESHOLD} instances of the new label",
 | 
						|
                show=verbose,
 | 
						|
            )
 | 
						|
        if has_no_neg_warning:
 | 
						|
            msg.text(
 | 
						|
                "Training data should always include examples of entities "
 | 
						|
                "in context, as well as examples without a given entity "
 | 
						|
                "type.",
 | 
						|
                show=verbose,
 | 
						|
            )
 | 
						|
        if has_ws_ents_error:
 | 
						|
            msg.text(
 | 
						|
                "Entity spans consisting of or starting/ending "
 | 
						|
                "with whitespace characters are considered invalid."
 | 
						|
            )
 | 
						|
 | 
						|
    if "textcat" in factory_names:
 | 
						|
        msg.divider("Text Classification (Exclusive Classes)")
 | 
						|
        labels = _get_labels_from_model(nlp, "textcat")
 | 
						|
        msg.info(f"Text Classification: {len(labels)} label(s)")
 | 
						|
        msg.text(f"Labels: {_format_labels(labels)}", show=verbose)
 | 
						|
        missing_labels = labels - set(gold_train_data["cats"])
 | 
						|
        if missing_labels:
 | 
						|
            msg.warn(
 | 
						|
                "Some model labels are not present in the train data. The "
 | 
						|
                "model performance may be degraded for these labels after "
 | 
						|
                f"training: {_format_labels(missing_labels)}."
 | 
						|
            )
 | 
						|
        if set(gold_train_data["cats"]) != set(gold_dev_data["cats"]):
 | 
						|
            msg.warn(
 | 
						|
                "Potential train/dev mismatch: the train and dev labels are "
 | 
						|
                "not the same. "
 | 
						|
                f"Train labels: {_format_labels(gold_train_data['cats'])}. "
 | 
						|
                f"Dev labels: {_format_labels(gold_dev_data['cats'])}."
 | 
						|
            )
 | 
						|
        if len(labels) < 2:
 | 
						|
            msg.fail(
 | 
						|
                "The model does not have enough labels. 'textcat' requires at "
 | 
						|
                "least two labels due to mutually-exclusive classes, e.g. "
 | 
						|
                "LABEL/NOT_LABEL or POSITIVE/NEGATIVE for a binary "
 | 
						|
                "classification task."
 | 
						|
            )
 | 
						|
        if (
 | 
						|
            gold_train_data["n_cats_bad_values"] > 0
 | 
						|
            or gold_dev_data["n_cats_bad_values"] > 0
 | 
						|
        ):
 | 
						|
            msg.fail(
 | 
						|
                "Unsupported values for cats: the supported values are "
 | 
						|
                "1.0/True and 0.0/False."
 | 
						|
            )
 | 
						|
        if gold_train_data["n_cats_multilabel"] > 0:
 | 
						|
            # Note: you should never get here because you run into E895 on
 | 
						|
            # initialization first.
 | 
						|
            msg.fail(
 | 
						|
                "The train data contains instances without mutually-exclusive "
 | 
						|
                "classes. Use the component 'textcat_multilabel' instead of "
 | 
						|
                "'textcat'."
 | 
						|
            )
 | 
						|
        if gold_dev_data["n_cats_multilabel"] > 0:
 | 
						|
            msg.fail(
 | 
						|
                "The dev data contains instances without mutually-exclusive "
 | 
						|
                "classes. Use the component 'textcat_multilabel' instead of "
 | 
						|
                "'textcat'."
 | 
						|
            )
 | 
						|
 | 
						|
    if "textcat_multilabel" in factory_names:
 | 
						|
        msg.divider("Text Classification (Multilabel)")
 | 
						|
        labels = _get_labels_from_model(nlp, "textcat_multilabel")
 | 
						|
        msg.info(f"Text Classification: {len(labels)} label(s)")
 | 
						|
        msg.text(f"Labels: {_format_labels(labels)}", show=verbose)
 | 
						|
        missing_labels = labels - set(gold_train_data["cats"])
 | 
						|
        if missing_labels:
 | 
						|
            msg.warn(
 | 
						|
                "Some model labels are not present in the train data. The "
 | 
						|
                "model performance may be degraded for these labels after "
 | 
						|
                f"training: {_format_labels(missing_labels)}."
 | 
						|
            )
 | 
						|
        if set(gold_train_data["cats"]) != set(gold_dev_data["cats"]):
 | 
						|
            msg.warn(
 | 
						|
                "Potential train/dev mismatch: the train and dev labels are "
 | 
						|
                "not the same. "
 | 
						|
                f"Train labels: {_format_labels(gold_train_data['cats'])}. "
 | 
						|
                f"Dev labels: {_format_labels(gold_dev_data['cats'])}."
 | 
						|
            )
 | 
						|
        if (
 | 
						|
            gold_train_data["n_cats_bad_values"] > 0
 | 
						|
            or gold_dev_data["n_cats_bad_values"] > 0
 | 
						|
        ):
 | 
						|
            msg.fail(
 | 
						|
                "Unsupported values for cats: the supported values are "
 | 
						|
                "1.0/True and 0.0/False."
 | 
						|
            )
 | 
						|
        if gold_train_data["n_cats_multilabel"] > 0:
 | 
						|
            if gold_dev_data["n_cats_multilabel"] == 0:
 | 
						|
                msg.warn(
 | 
						|
                    "Potential train/dev mismatch: the train data contains "
 | 
						|
                    "instances without mutually-exclusive classes while the "
 | 
						|
                    "dev data contains only instances with mutually-exclusive "
 | 
						|
                    "classes."
 | 
						|
                )
 | 
						|
        else:
 | 
						|
            msg.warn(
 | 
						|
                "The train data contains only instances with "
 | 
						|
                "mutually-exclusive classes. You can potentially use the "
 | 
						|
                "component 'textcat' instead of 'textcat_multilabel'."
 | 
						|
            )
 | 
						|
            if gold_dev_data["n_cats_multilabel"] > 0:
 | 
						|
                msg.fail(
 | 
						|
                    "Train/dev mismatch: the dev data contains instances "
 | 
						|
                    "without mutually-exclusive classes while the train data "
 | 
						|
                    "contains only instances with mutually-exclusive classes."
 | 
						|
                )
 | 
						|
 | 
						|
    if "tagger" in factory_names:
 | 
						|
        msg.divider("Part-of-speech Tagging")
 | 
						|
        label_list = [label for label in gold_train_data["tags"]]
 | 
						|
        model_labels = _get_labels_from_model(nlp, "tagger")
 | 
						|
        msg.info(f"{len(label_list)} label(s) in train data")
 | 
						|
        labels = set(label_list)
 | 
						|
        missing_labels = model_labels - labels
 | 
						|
        if missing_labels:
 | 
						|
            msg.warn(
 | 
						|
                "Some model labels are not present in the train data. The "
 | 
						|
                "model performance may be degraded for these labels after "
 | 
						|
                f"training: {_format_labels(missing_labels)}."
 | 
						|
            )
 | 
						|
        labels_with_counts = _format_labels(
 | 
						|
            gold_train_data["tags"].most_common(), counts=True
 | 
						|
        )
 | 
						|
        msg.text(labels_with_counts, show=verbose)
 | 
						|
 | 
						|
    if "morphologizer" in factory_names:
 | 
						|
        msg.divider("Morphologizer (POS+Morph)")
 | 
						|
        label_list = [label for label in gold_train_data["morphs"]]
 | 
						|
        model_labels = _get_labels_from_model(nlp, "morphologizer")
 | 
						|
        msg.info(f"{len(label_list)} label(s) in train data")
 | 
						|
        labels = set(label_list)
 | 
						|
        missing_labels = model_labels - labels
 | 
						|
        if missing_labels:
 | 
						|
            msg.warn(
 | 
						|
                "Some model labels are not present in the train data. The "
 | 
						|
                "model performance may be degraded for these labels after "
 | 
						|
                f"training: {_format_labels(missing_labels)}."
 | 
						|
            )
 | 
						|
        labels_with_counts = _format_labels(
 | 
						|
            gold_train_data["morphs"].most_common(), counts=True
 | 
						|
        )
 | 
						|
        msg.text(labels_with_counts, show=verbose)
 | 
						|
 | 
						|
    if "parser" in factory_names:
 | 
						|
        has_low_data_warning = False
 | 
						|
        msg.divider("Dependency Parsing")
 | 
						|
 | 
						|
        # profile sentence length
 | 
						|
        msg.info(
 | 
						|
            f"Found {gold_train_data['n_sents']} sentence(s) with an average "
 | 
						|
            f"length of {gold_train_data['n_words'] / gold_train_data['n_sents']:.1f} words."
 | 
						|
        )
 | 
						|
 | 
						|
        # check for documents with multiple sentences
 | 
						|
        sents_per_doc = gold_train_data["n_sents"] / len(gold_train_data["texts"])
 | 
						|
        if sents_per_doc < 1.1:
 | 
						|
            msg.warn(
 | 
						|
                f"The training data contains {sents_per_doc:.2f} sentences per "
 | 
						|
                f"document. When there are very few documents containing more "
 | 
						|
                f"than one sentence, the parser will not learn how to segment "
 | 
						|
                f"longer texts into sentences."
 | 
						|
            )
 | 
						|
 | 
						|
        # profile labels
 | 
						|
        labels_train = [label for label in gold_train_data["deps"]]
 | 
						|
        labels_train_unpreprocessed = [
 | 
						|
            label for label in gold_train_unpreprocessed_data["deps"]
 | 
						|
        ]
 | 
						|
        labels_dev = [label for label in gold_dev_data["deps"]]
 | 
						|
 | 
						|
        if gold_train_unpreprocessed_data["n_nonproj"] > 0:
 | 
						|
            n_nonproj = gold_train_unpreprocessed_data["n_nonproj"]
 | 
						|
            msg.info(f"Found {n_nonproj} nonprojective train sentence(s)")
 | 
						|
        if gold_dev_data["n_nonproj"] > 0:
 | 
						|
            n_nonproj = gold_dev_data["n_nonproj"]
 | 
						|
            msg.info(f"Found {n_nonproj} nonprojective dev sentence(s)")
 | 
						|
        msg.info(f"{len(labels_train_unpreprocessed)} label(s) in train data")
 | 
						|
        msg.info(f"{len(labels_train)} label(s) in projectivized train data")
 | 
						|
        labels_with_counts = _format_labels(
 | 
						|
            gold_train_unpreprocessed_data["deps"].most_common(), counts=True
 | 
						|
        )
 | 
						|
        msg.text(labels_with_counts, show=verbose)
 | 
						|
 | 
						|
        # rare labels in train
 | 
						|
        for label in gold_train_unpreprocessed_data["deps"]:
 | 
						|
            if gold_train_unpreprocessed_data["deps"][label] <= DEP_LABEL_THRESHOLD:
 | 
						|
                msg.warn(
 | 
						|
                    f"Low number of examples for label '{label}' "
 | 
						|
                    f"({gold_train_unpreprocessed_data['deps'][label]})"
 | 
						|
                )
 | 
						|
                has_low_data_warning = True
 | 
						|
 | 
						|
        # rare labels in projectivized train
 | 
						|
        rare_projectivized_labels = []
 | 
						|
        for label in gold_train_data["deps"]:
 | 
						|
            if (
 | 
						|
                gold_train_data["deps"][label] <= DEP_LABEL_THRESHOLD
 | 
						|
                and DELIMITER in label
 | 
						|
            ):
 | 
						|
                rare_projectivized_labels.append(
 | 
						|
                    f"{label}: {gold_train_data['deps'][label]}"
 | 
						|
                )
 | 
						|
 | 
						|
        if len(rare_projectivized_labels) > 0:
 | 
						|
            msg.warn(
 | 
						|
                f"Low number of examples for {len(rare_projectivized_labels)} "
 | 
						|
                "label(s) in the projectivized dependency trees used for "
 | 
						|
                "training. You may want to projectivize labels such as punct "
 | 
						|
                "before training in order to improve parser performance."
 | 
						|
            )
 | 
						|
            msg.warn(
 | 
						|
                f"Projectivized labels with low numbers of examples: ",
 | 
						|
                ", ".join(rare_projectivized_labels),
 | 
						|
                show=verbose,
 | 
						|
            )
 | 
						|
            has_low_data_warning = True
 | 
						|
 | 
						|
        # labels only in train
 | 
						|
        if set(labels_train) - set(labels_dev):
 | 
						|
            msg.warn(
 | 
						|
                "The following labels were found only in the train data:",
 | 
						|
                ", ".join(set(labels_train) - set(labels_dev)),
 | 
						|
                show=verbose,
 | 
						|
            )
 | 
						|
 | 
						|
        # labels only in dev
 | 
						|
        if set(labels_dev) - set(labels_train):
 | 
						|
            msg.warn(
 | 
						|
                "The following labels were found only in the dev data:",
 | 
						|
                ", ".join(set(labels_dev) - set(labels_train)),
 | 
						|
                show=verbose,
 | 
						|
            )
 | 
						|
 | 
						|
        if has_low_data_warning:
 | 
						|
            msg.text(
 | 
						|
                f"To train a parser, your data should include at "
 | 
						|
                f"least {DEP_LABEL_THRESHOLD} instances of each label.",
 | 
						|
                show=verbose,
 | 
						|
            )
 | 
						|
 | 
						|
        # multiple root labels
 | 
						|
        if len(gold_train_unpreprocessed_data["roots"]) > 1:
 | 
						|
            msg.warn(
 | 
						|
                f"Multiple root labels "
 | 
						|
                f"({', '.join(gold_train_unpreprocessed_data['roots'])}) "
 | 
						|
                f"found in training data. spaCy's parser uses a single root "
 | 
						|
                f"label ROOT so this distinction will not be available."
 | 
						|
            )
 | 
						|
 | 
						|
        # these should not happen, but just in case
 | 
						|
        if gold_train_data["n_nonproj"] > 0:
 | 
						|
            msg.fail(
 | 
						|
                f"Found {gold_train_data['n_nonproj']} nonprojective "
 | 
						|
                f"projectivized train sentence(s)"
 | 
						|
            )
 | 
						|
        if gold_train_data["n_cycles"] > 0:
 | 
						|
            msg.fail(
 | 
						|
                f"Found {gold_train_data['n_cycles']} projectivized train sentence(s) with cycles"
 | 
						|
            )
 | 
						|
 | 
						|
    msg.divider("Summary")
 | 
						|
    good_counts = msg.counts[MESSAGES.GOOD]
 | 
						|
    warn_counts = msg.counts[MESSAGES.WARN]
 | 
						|
    fail_counts = msg.counts[MESSAGES.FAIL]
 | 
						|
    if good_counts:
 | 
						|
        msg.good(f"{good_counts} {'check' if good_counts == 1 else 'checks'} passed")
 | 
						|
    if warn_counts:
 | 
						|
        msg.warn(f"{warn_counts} {'warning' if warn_counts == 1 else 'warnings'}")
 | 
						|
    if fail_counts:
 | 
						|
        msg.fail(f"{fail_counts} {'error' if fail_counts == 1 else 'errors'}")
 | 
						|
        sys.exit(1)
 | 
						|
 | 
						|
 | 
						|
def _load_file(file_path: Path, msg: Printer) -> None:
 | 
						|
    file_name = file_path.parts[-1]
 | 
						|
    if file_path.suffix == ".json":
 | 
						|
        with msg.loading(f"Loading {file_name}..."):
 | 
						|
            data = srsly.read_json(file_path)
 | 
						|
        msg.good(f"Loaded {file_name}")
 | 
						|
        return data
 | 
						|
    elif file_path.suffix == ".jsonl":
 | 
						|
        with msg.loading(f"Loading {file_name}..."):
 | 
						|
            data = srsly.read_jsonl(file_path)
 | 
						|
        msg.good(f"Loaded {file_name}")
 | 
						|
        return data
 | 
						|
    msg.fail(
 | 
						|
        f"Can't load file extension {file_path.suffix}",
 | 
						|
        "Expected .json or .jsonl",
 | 
						|
        exits=1,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def _compile_gold(
 | 
						|
    examples: Sequence[Example],
 | 
						|
    factory_names: List[str],
 | 
						|
    nlp: Language,
 | 
						|
    make_proj: bool,
 | 
						|
) -> Dict[str, Any]:
 | 
						|
    data: Dict[str, Any] = {
 | 
						|
        "ner": Counter(),
 | 
						|
        "cats": Counter(),
 | 
						|
        "tags": Counter(),
 | 
						|
        "morphs": Counter(),
 | 
						|
        "deps": Counter(),
 | 
						|
        "words": Counter(),
 | 
						|
        "roots": Counter(),
 | 
						|
        "spancat": dict(),
 | 
						|
        "spans_length": dict(),
 | 
						|
        "spans_per_type": dict(),
 | 
						|
        "sb_per_type": dict(),
 | 
						|
        "ws_ents": 0,
 | 
						|
        "boundary_cross_ents": 0,
 | 
						|
        "n_words": 0,
 | 
						|
        "n_misaligned_words": 0,
 | 
						|
        "words_missing_vectors": Counter(),
 | 
						|
        "n_sents": 0,
 | 
						|
        "n_nonproj": 0,
 | 
						|
        "n_cycles": 0,
 | 
						|
        "n_cats_multilabel": 0,
 | 
						|
        "n_cats_bad_values": 0,
 | 
						|
        "texts": set(),
 | 
						|
    }
 | 
						|
    for eg in examples:
 | 
						|
        gold = eg.reference
 | 
						|
        doc = eg.predicted
 | 
						|
        valid_words = [x.text for x in gold]
 | 
						|
        data["words"].update(valid_words)
 | 
						|
        data["n_words"] += len(valid_words)
 | 
						|
        align = eg.alignment
 | 
						|
        for token in doc:
 | 
						|
            if token.orth_.isspace():
 | 
						|
                continue
 | 
						|
            if align.x2y.lengths[token.i] != 1:
 | 
						|
                data["n_misaligned_words"] += 1
 | 
						|
        data["texts"].add(doc.text)
 | 
						|
        if len(nlp.vocab.vectors):
 | 
						|
            for word in [t.text for t in doc]:
 | 
						|
                if nlp.vocab.strings[word] not in nlp.vocab.vectors:
 | 
						|
                    data["words_missing_vectors"].update([word])
 | 
						|
        if "ner" in factory_names:
 | 
						|
            sent_starts = eg.get_aligned_sent_starts()
 | 
						|
            for i, label in enumerate(eg.get_aligned_ner()):
 | 
						|
                if label is None:
 | 
						|
                    continue
 | 
						|
                if label.startswith(("B-", "U-", "L-")) and doc[i].is_space:
 | 
						|
                    # "Illegal" whitespace entity
 | 
						|
                    data["ws_ents"] += 1
 | 
						|
                if label.startswith(("B-", "U-")):
 | 
						|
                    combined_label = remove_bilu_prefix(label)
 | 
						|
                    data["ner"][combined_label] += 1
 | 
						|
                if sent_starts[i] and label.startswith(("I-", "L-")):
 | 
						|
                    data["boundary_cross_ents"] += 1
 | 
						|
                elif label == "-":
 | 
						|
                    data["ner"]["-"] += 1
 | 
						|
        if "spancat" in factory_names:
 | 
						|
            for spans_key in list(eg.reference.spans.keys()):
 | 
						|
                # Obtain the span frequency
 | 
						|
                if spans_key not in data["spancat"]:
 | 
						|
                    data["spancat"][spans_key] = Counter()
 | 
						|
                for i, span in enumerate(eg.reference.spans[spans_key]):
 | 
						|
                    if span.label_ is None:
 | 
						|
                        continue
 | 
						|
                    else:
 | 
						|
                        data["spancat"][spans_key][span.label_] += 1
 | 
						|
 | 
						|
                # Obtain the span length
 | 
						|
                if spans_key not in data["spans_length"]:
 | 
						|
                    data["spans_length"][spans_key] = dict()
 | 
						|
                for span in gold.spans[spans_key]:
 | 
						|
                    if span.label_ is None:
 | 
						|
                        continue
 | 
						|
                    if span.label_ not in data["spans_length"][spans_key]:
 | 
						|
                        data["spans_length"][spans_key][span.label_] = []
 | 
						|
                    data["spans_length"][spans_key][span.label_].append(len(span))
 | 
						|
 | 
						|
                # Obtain spans per span type
 | 
						|
                if spans_key not in data["spans_per_type"]:
 | 
						|
                    data["spans_per_type"][spans_key] = dict()
 | 
						|
                for span in gold.spans[spans_key]:
 | 
						|
                    if span.label_ not in data["spans_per_type"][spans_key]:
 | 
						|
                        data["spans_per_type"][spans_key][span.label_] = []
 | 
						|
                    data["spans_per_type"][spans_key][span.label_].append(span)
 | 
						|
 | 
						|
                # Obtain boundary tokens per span type
 | 
						|
                window_size = 1
 | 
						|
                if spans_key not in data["sb_per_type"]:
 | 
						|
                    data["sb_per_type"][spans_key] = dict()
 | 
						|
                for span in gold.spans[spans_key]:
 | 
						|
                    if span.label_ not in data["sb_per_type"][spans_key]:
 | 
						|
                        # Creating a data structure that holds the start and
 | 
						|
                        # end tokens for each span type
 | 
						|
                        data["sb_per_type"][spans_key][span.label_] = {
 | 
						|
                            "start": [],
 | 
						|
                            "end": [],
 | 
						|
                        }
 | 
						|
                    for offset in range(window_size):
 | 
						|
                        sb_start_idx = span.start - (offset + 1)
 | 
						|
                        if sb_start_idx >= 0:
 | 
						|
                            data["sb_per_type"][spans_key][span.label_]["start"].append(
 | 
						|
                                gold[sb_start_idx : sb_start_idx + 1]
 | 
						|
                            )
 | 
						|
 | 
						|
                        sb_end_idx = span.end + (offset + 1)
 | 
						|
                        if sb_end_idx <= len(gold):
 | 
						|
                            data["sb_per_type"][spans_key][span.label_]["end"].append(
 | 
						|
                                gold[sb_end_idx - 1 : sb_end_idx]
 | 
						|
                            )
 | 
						|
 | 
						|
        if "textcat" in factory_names or "textcat_multilabel" in factory_names:
 | 
						|
            data["cats"].update(gold.cats)
 | 
						|
            if any(val not in (0, 1) for val in gold.cats.values()):
 | 
						|
                data["n_cats_bad_values"] += 1
 | 
						|
            if list(gold.cats.values()).count(1) != 1:
 | 
						|
                data["n_cats_multilabel"] += 1
 | 
						|
        if "tagger" in factory_names:
 | 
						|
            tags = eg.get_aligned("TAG", as_string=True)
 | 
						|
            data["tags"].update([x for x in tags if x is not None])
 | 
						|
        if "morphologizer" in factory_names:
 | 
						|
            pos_tags = eg.get_aligned("POS", as_string=True)
 | 
						|
            morphs = eg.get_aligned("MORPH", as_string=True)
 | 
						|
            for pos, morph in zip(pos_tags, morphs):
 | 
						|
                # POS may align (same value for multiple tokens) when morph
 | 
						|
                # doesn't, so if either is misaligned (None), treat the
 | 
						|
                # annotation as missing so that truths doesn't end up with an
 | 
						|
                # unknown morph+POS combination
 | 
						|
                if pos is None or morph is None:
 | 
						|
                    pass
 | 
						|
                # If both are unset, the annotation is missing (empty morph
 | 
						|
                # converted from int is "_" rather than "")
 | 
						|
                elif pos == "" and morph == "":
 | 
						|
                    pass
 | 
						|
                # Otherwise, generate the combined label
 | 
						|
                else:
 | 
						|
                    label_dict = Morphology.feats_to_dict(morph)
 | 
						|
                    if pos:
 | 
						|
                        label_dict[Morphologizer.POS_FEAT] = pos
 | 
						|
                    label = eg.reference.vocab.strings[
 | 
						|
                        eg.reference.vocab.morphology.add(label_dict)
 | 
						|
                    ]
 | 
						|
                    data["morphs"].update([label])
 | 
						|
        if "parser" in factory_names:
 | 
						|
            aligned_heads, aligned_deps = eg.get_aligned_parse(projectivize=make_proj)
 | 
						|
            data["deps"].update([x for x in aligned_deps if x is not None])
 | 
						|
            for i, (dep, head) in enumerate(zip(aligned_deps, aligned_heads)):
 | 
						|
                if head == i:
 | 
						|
                    data["roots"].update([dep])
 | 
						|
                    data["n_sents"] += 1
 | 
						|
            if nonproj.is_nonproj_tree(aligned_heads):
 | 
						|
                data["n_nonproj"] += 1
 | 
						|
            if nonproj.contains_cycle(aligned_heads):
 | 
						|
                data["n_cycles"] += 1
 | 
						|
    return data
 | 
						|
 | 
						|
 | 
						|
@overload
 | 
						|
def _format_labels(labels: Iterable[str], counts: Literal[False] = False) -> str:
 | 
						|
    ...
 | 
						|
 | 
						|
 | 
						|
@overload
 | 
						|
def _format_labels(
 | 
						|
    labels: Iterable[Tuple[str, int]],
 | 
						|
    counts: Literal[True],
 | 
						|
) -> str:
 | 
						|
    ...
 | 
						|
 | 
						|
 | 
						|
def _format_labels(
 | 
						|
    labels: Union[Iterable[str], Iterable[Tuple[str, int]]],
 | 
						|
    counts: bool = False,
 | 
						|
) -> str:
 | 
						|
    if counts:
 | 
						|
        return ", ".join(
 | 
						|
            [f"'{l}' ({c})" for l, c in cast(Iterable[Tuple[str, int]], labels)]
 | 
						|
        )
 | 
						|
    return ", ".join([f"'{l}'" for l in cast(Iterable[str], labels)])
 | 
						|
 | 
						|
 | 
						|
def _format_freqs(freqs: Dict[int, float], sort: bool = True) -> str:
 | 
						|
    if sort:
 | 
						|
        freqs = dict(sorted(freqs.items()))
 | 
						|
 | 
						|
    _freqs = [(str(k), v) for k, v in freqs.items()]
 | 
						|
    return ", ".join(
 | 
						|
        [f"{l} ({c}%)" for l, c in cast(Iterable[Tuple[str, float]], _freqs)]
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def _get_examples_without_label(
 | 
						|
    data: Sequence[Example],
 | 
						|
    label: str,
 | 
						|
    component: Literal["ner", "spancat"] = "ner",
 | 
						|
    spans_key: Optional[str] = "sc",
 | 
						|
) -> int:
 | 
						|
    count = 0
 | 
						|
    for eg in data:
 | 
						|
        if component == "ner":
 | 
						|
            labels = [
 | 
						|
                remove_bilu_prefix(label)
 | 
						|
                for label in eg.get_aligned_ner()
 | 
						|
                if label not in ("O", "-", None)
 | 
						|
            ]
 | 
						|
 | 
						|
        if component == "spancat":
 | 
						|
            labels = (
 | 
						|
                [span.label_ for span in eg.reference.spans[spans_key]]
 | 
						|
                if spans_key in eg.reference.spans
 | 
						|
                else []
 | 
						|
            )
 | 
						|
 | 
						|
        if label not in labels:
 | 
						|
            count += 1
 | 
						|
    return count
 | 
						|
 | 
						|
 | 
						|
def _get_labels_from_model(nlp: Language, factory_name: str) -> Set[str]:
 | 
						|
    pipe_names = [
 | 
						|
        pipe_name
 | 
						|
        for pipe_name in nlp.pipe_names
 | 
						|
        if nlp.get_pipe_meta(pipe_name).factory == factory_name
 | 
						|
    ]
 | 
						|
    labels: Set[str] = set()
 | 
						|
    for pipe_name in pipe_names:
 | 
						|
        pipe = nlp.get_pipe(pipe_name)
 | 
						|
        labels.update(pipe.labels)
 | 
						|
    return labels
 | 
						|
 | 
						|
 | 
						|
def _get_labels_from_spancat(nlp: Language) -> Dict[str, Set[str]]:
 | 
						|
    pipe_names = [
 | 
						|
        pipe_name
 | 
						|
        for pipe_name in nlp.pipe_names
 | 
						|
        if nlp.get_pipe_meta(pipe_name).factory == "spancat"
 | 
						|
    ]
 | 
						|
    labels: Dict[str, Set[str]] = {}
 | 
						|
    for pipe_name in pipe_names:
 | 
						|
        pipe = nlp.get_pipe(pipe_name)
 | 
						|
        assert isinstance(pipe, SpanCategorizer)
 | 
						|
        if pipe.key not in labels:
 | 
						|
            labels[pipe.key] = set()
 | 
						|
        labels[pipe.key].update(pipe.labels)
 | 
						|
    return labels
 | 
						|
 | 
						|
 | 
						|
def _gmean(l: List) -> float:
 | 
						|
    """Compute geometric mean of a list"""
 | 
						|
    return math.exp(math.fsum(math.log(i) for i in l) / len(l))
 | 
						|
 | 
						|
 | 
						|
def _wgt_average(metric: Dict[str, float], frequencies: Counter) -> float:
 | 
						|
    total = sum(value * frequencies[span_type] for span_type, value in metric.items())
 | 
						|
    return total / sum(frequencies.values())
 | 
						|
 | 
						|
 | 
						|
def _get_distribution(docs, normalize: bool = True) -> Counter:
 | 
						|
    """Get the frequency distribution given a set of Docs"""
 | 
						|
    word_counts: Counter = Counter()
 | 
						|
    for doc in docs:
 | 
						|
        for token in doc:
 | 
						|
            # Normalize the text
 | 
						|
            t = token.text.lower().replace("``", '"').replace("''", '"')
 | 
						|
            word_counts[t] += 1
 | 
						|
    if normalize:
 | 
						|
        total = sum(word_counts.values(), 0.0)
 | 
						|
        word_counts = Counter({k: v / total for k, v in word_counts.items()})
 | 
						|
    return word_counts
 | 
						|
 | 
						|
 | 
						|
def _get_kl_divergence(p: Counter, q: Counter) -> float:
 | 
						|
    """Compute the Kullback-Leibler divergence from two frequency distributions"""
 | 
						|
    total = 0.0
 | 
						|
    for word, p_word in p.items():
 | 
						|
        total += p_word * math.log(p_word / q[word])
 | 
						|
    return total
 | 
						|
 | 
						|
 | 
						|
def _format_span_row(span_data: List[Dict], labels: List[str]) -> List[Any]:
 | 
						|
    """Compile into one list for easier reporting"""
 | 
						|
    d = {
 | 
						|
        label: [label] + list(round(d[label], 2) for d in span_data) for label in labels
 | 
						|
    }
 | 
						|
    return list(d.values())
 | 
						|
 | 
						|
 | 
						|
def _get_span_characteristics(
 | 
						|
    examples: List[Example], compiled_gold: Dict[str, Any], spans_key: str
 | 
						|
) -> Dict[str, Any]:
 | 
						|
    """Obtain all span characteristics"""
 | 
						|
    data_labels = compiled_gold["spancat"][spans_key]
 | 
						|
    # Get lengths
 | 
						|
    span_length = {
 | 
						|
        label: _gmean(l)
 | 
						|
        for label, l in compiled_gold["spans_length"][spans_key].items()
 | 
						|
    }
 | 
						|
    min_lengths = [min(l) for l in compiled_gold["spans_length"][spans_key].values()]
 | 
						|
    max_lengths = [max(l) for l in compiled_gold["spans_length"][spans_key].values()]
 | 
						|
 | 
						|
    # Get relevant distributions: corpus, spans, span boundaries
 | 
						|
    p_corpus = _get_distribution([eg.reference for eg in examples], normalize=True)
 | 
						|
    p_spans = {
 | 
						|
        label: _get_distribution(spans, normalize=True)
 | 
						|
        for label, spans in compiled_gold["spans_per_type"][spans_key].items()
 | 
						|
    }
 | 
						|
    p_bounds = {
 | 
						|
        label: _get_distribution(sb["start"] + sb["end"], normalize=True)
 | 
						|
        for label, sb in compiled_gold["sb_per_type"][spans_key].items()
 | 
						|
    }
 | 
						|
 | 
						|
    # Compute for actual span characteristics
 | 
						|
    span_distinctiveness = {
 | 
						|
        label: _get_kl_divergence(freq_dist, p_corpus)
 | 
						|
        for label, freq_dist in p_spans.items()
 | 
						|
    }
 | 
						|
    sb_distinctiveness = {
 | 
						|
        label: _get_kl_divergence(freq_dist, p_corpus)
 | 
						|
        for label, freq_dist in p_bounds.items()
 | 
						|
    }
 | 
						|
 | 
						|
    return {
 | 
						|
        "sd": span_distinctiveness,
 | 
						|
        "bd": sb_distinctiveness,
 | 
						|
        "lengths": span_length,
 | 
						|
        "min_length": min(min_lengths),
 | 
						|
        "max_length": max(max_lengths),
 | 
						|
        "avg_sd": _wgt_average(span_distinctiveness, data_labels),
 | 
						|
        "avg_bd": _wgt_average(sb_distinctiveness, data_labels),
 | 
						|
        "avg_length": _wgt_average(span_length, data_labels),
 | 
						|
        "labels": list(data_labels.keys()),
 | 
						|
        "p_spans": p_spans,
 | 
						|
        "p_bounds": p_bounds,
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
def _print_span_characteristics(span_characteristics: Dict[str, Any]):
 | 
						|
    """Print all span characteristics into a table"""
 | 
						|
    headers = ("Span Type", "Length", "SD", "BD")
 | 
						|
    # Prepare table data with all span characteristics
 | 
						|
    table_data = [
 | 
						|
        span_characteristics["lengths"],
 | 
						|
        span_characteristics["sd"],
 | 
						|
        span_characteristics["bd"],
 | 
						|
    ]
 | 
						|
    table = _format_span_row(
 | 
						|
        span_data=table_data, labels=span_characteristics["labels"]
 | 
						|
    )
 | 
						|
    # Prepare table footer with weighted averages
 | 
						|
    footer_data = [
 | 
						|
        span_characteristics["avg_length"],
 | 
						|
        span_characteristics["avg_sd"],
 | 
						|
        span_characteristics["avg_bd"],
 | 
						|
    ]
 | 
						|
    footer = ["Wgt. Average"] + [str(round(f, 2)) for f in footer_data]
 | 
						|
    msg.table(table, footer=footer, header=headers, divider=True)
 | 
						|
 | 
						|
 | 
						|
def _get_spans_length_freq_dist(
 | 
						|
    length_dict: Dict, threshold=SPAN_LENGTH_THRESHOLD_PERCENTAGE
 | 
						|
) -> Dict[int, float]:
 | 
						|
    """Get frequency distribution of spans length under a certain threshold"""
 | 
						|
    all_span_lengths = []
 | 
						|
    for _, lengths in length_dict.items():
 | 
						|
        all_span_lengths.extend(lengths)
 | 
						|
 | 
						|
    freq_dist: Counter = Counter()
 | 
						|
    for i in all_span_lengths:
 | 
						|
        if freq_dist.get(i):
 | 
						|
            freq_dist[i] += 1
 | 
						|
        else:
 | 
						|
            freq_dist[i] = 1
 | 
						|
 | 
						|
    # We will be working with percentages instead of raw counts
 | 
						|
    freq_dist_percentage = {}
 | 
						|
    for span_length, count in freq_dist.most_common():
 | 
						|
        percentage = (count / len(all_span_lengths)) * 100.0
 | 
						|
        percentage = round(percentage, 2)
 | 
						|
        freq_dist_percentage[span_length] = percentage
 | 
						|
 | 
						|
    return freq_dist_percentage
 | 
						|
 | 
						|
 | 
						|
def _filter_spans_length_freq_dist(
 | 
						|
    freq_dist: Dict[int, float], threshold: int
 | 
						|
) -> Dict[int, float]:
 | 
						|
    """Filter frequency distribution with respect to a threshold
 | 
						|
 | 
						|
    We're going to filter all the span lengths that fall
 | 
						|
    around a percentage threshold when summed.
 | 
						|
    """
 | 
						|
    total = 0.0
 | 
						|
    filtered_freq_dist = {}
 | 
						|
    for span_length, dist in freq_dist.items():
 | 
						|
        if total >= threshold:
 | 
						|
            break
 | 
						|
        else:
 | 
						|
            filtered_freq_dist[span_length] = dist
 | 
						|
        total += dist
 | 
						|
    return filtered_freq_dist
 |