mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* Migrate regressions 1-1000 * Move serialize test to correct file * Remove tests that won't work in v3 * Migrate regressions 1000-1500 Removed regression test 1250 because v3 doesn't support the old LEX scheme anymore. * Add missing imports in serializer tests * Migrate tests 1500-2000 * Migrate regressions from 2000-2500 * Migrate regressions from 2501-3000 * Migrate regressions from 3000-3501 * Migrate regressions from 3501-4000 * Migrate regressions from 4001-4500 * Migrate regressions from 4501-5000 * Migrate regressions from 5001-5501 * Migrate regressions from 5501 to 7000 * Migrate regressions from 7001 to 8000 * Migrate remaining regression tests * Fixing missing imports * Update docs with new system [ci skip] * Update CONTRIBUTING.md - Fix formatting - Update wording * Remove lemmatizer tests in el lang * Move a few tests into the general tokenizer * Separate Doc and DocBin tests
		
			
				
	
	
		
			137 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			137 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import numpy
 | 
						|
import pytest
 | 
						|
 | 
						|
from spacy.tokens import Doc
 | 
						|
from spacy.attrs import ORTH, SHAPE, POS, DEP, MORPH
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.issue(2203)
 | 
						|
def test_issue2203(en_vocab):
 | 
						|
    """Test that lemmas are set correctly in doc.from_array."""
 | 
						|
    words = ["I", "'ll", "survive"]
 | 
						|
    tags = ["PRP", "MD", "VB"]
 | 
						|
    lemmas = ["-PRON-", "will", "survive"]
 | 
						|
    tag_ids = [en_vocab.strings.add(tag) for tag in tags]
 | 
						|
    lemma_ids = [en_vocab.strings.add(lemma) for lemma in lemmas]
 | 
						|
    doc = Doc(en_vocab, words=words)
 | 
						|
    # Work around lemma corruption problem and set lemmas after tags
 | 
						|
    doc.from_array("TAG", numpy.array(tag_ids, dtype="uint64"))
 | 
						|
    doc.from_array("LEMMA", numpy.array(lemma_ids, dtype="uint64"))
 | 
						|
    assert [t.tag_ for t in doc] == tags
 | 
						|
    assert [t.lemma_ for t in doc] == lemmas
 | 
						|
    # We need to serialize both tag and lemma, since this is what causes the bug
 | 
						|
    doc_array = doc.to_array(["TAG", "LEMMA"])
 | 
						|
    new_doc = Doc(doc.vocab, words=words).from_array(["TAG", "LEMMA"], doc_array)
 | 
						|
    assert [t.tag_ for t in new_doc] == tags
 | 
						|
    assert [t.lemma_ for t in new_doc] == lemmas
 | 
						|
 | 
						|
 | 
						|
def test_doc_array_attr_of_token(en_vocab):
 | 
						|
    doc = Doc(en_vocab, words=["An", "example", "sentence"])
 | 
						|
    example = doc.vocab["example"]
 | 
						|
    assert example.orth != example.shape
 | 
						|
    feats_array = doc.to_array((ORTH, SHAPE))
 | 
						|
    assert feats_array[0][0] != feats_array[0][1]
 | 
						|
    assert feats_array[0][0] != feats_array[0][1]
 | 
						|
 | 
						|
 | 
						|
def test_doc_stringy_array_attr_of_token(en_vocab):
 | 
						|
    doc = Doc(en_vocab, words=["An", "example", "sentence"])
 | 
						|
    example = doc.vocab["example"]
 | 
						|
    assert example.orth != example.shape
 | 
						|
    feats_array = doc.to_array((ORTH, SHAPE))
 | 
						|
    feats_array_stringy = doc.to_array(("ORTH", "SHAPE"))
 | 
						|
    assert feats_array_stringy[0][0] == feats_array[0][0]
 | 
						|
    assert feats_array_stringy[0][1] == feats_array[0][1]
 | 
						|
 | 
						|
 | 
						|
def test_doc_scalar_attr_of_token(en_vocab):
 | 
						|
    doc = Doc(en_vocab, words=["An", "example", "sentence"])
 | 
						|
    example = doc.vocab["example"]
 | 
						|
    assert example.orth != example.shape
 | 
						|
    feats_array = doc.to_array(ORTH)
 | 
						|
    assert feats_array.shape == (3,)
 | 
						|
 | 
						|
 | 
						|
def test_doc_array_tag(en_vocab):
 | 
						|
    words = ["A", "nice", "sentence", "."]
 | 
						|
    pos = ["DET", "ADJ", "NOUN", "PUNCT"]
 | 
						|
    doc = Doc(en_vocab, words=words, pos=pos)
 | 
						|
    assert doc[0].pos != doc[1].pos != doc[2].pos != doc[3].pos
 | 
						|
    feats_array = doc.to_array((ORTH, POS))
 | 
						|
    assert feats_array[0][1] == doc[0].pos
 | 
						|
    assert feats_array[1][1] == doc[1].pos
 | 
						|
    assert feats_array[2][1] == doc[2].pos
 | 
						|
    assert feats_array[3][1] == doc[3].pos
 | 
						|
 | 
						|
 | 
						|
def test_doc_array_morph(en_vocab):
 | 
						|
    words = ["Eat", "blue", "ham"]
 | 
						|
    morph = ["Feat=V", "Feat=J", "Feat=N"]
 | 
						|
    doc = Doc(en_vocab, words=words, morphs=morph)
 | 
						|
    assert morph[0] == str(doc[0].morph)
 | 
						|
    assert morph[1] == str(doc[1].morph)
 | 
						|
    assert morph[2] == str(doc[2].morph)
 | 
						|
 | 
						|
    feats_array = doc.to_array((ORTH, MORPH))
 | 
						|
    assert feats_array[0][1] == doc[0].morph.key
 | 
						|
    assert feats_array[1][1] == doc[1].morph.key
 | 
						|
    assert feats_array[2][1] == doc[2].morph.key
 | 
						|
 | 
						|
 | 
						|
def test_doc_array_dep(en_vocab):
 | 
						|
    words = ["A", "nice", "sentence", "."]
 | 
						|
    deps = ["det", "amod", "ROOT", "punct"]
 | 
						|
    doc = Doc(en_vocab, words=words, deps=deps)
 | 
						|
    feats_array = doc.to_array((ORTH, DEP))
 | 
						|
    assert feats_array[0][1] == doc[0].dep
 | 
						|
    assert feats_array[1][1] == doc[1].dep
 | 
						|
    assert feats_array[2][1] == doc[2].dep
 | 
						|
    assert feats_array[3][1] == doc[3].dep
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("attrs", [["ORTH", "SHAPE"], "IS_ALPHA"])
 | 
						|
def test_doc_array_to_from_string_attrs(en_vocab, attrs):
 | 
						|
    """Test that both Doc.to_array and Doc.from_array accept string attrs,
 | 
						|
    as well as single attrs and sequences of attrs.
 | 
						|
    """
 | 
						|
    words = ["An", "example", "sentence"]
 | 
						|
    doc = Doc(en_vocab, words=words)
 | 
						|
    Doc(en_vocab, words=words).from_array(attrs, doc.to_array(attrs))
 | 
						|
 | 
						|
 | 
						|
def test_doc_array_idx(en_vocab):
 | 
						|
    """Test that Doc.to_array can retrieve token start indices"""
 | 
						|
    words = ["An", "example", "sentence"]
 | 
						|
    offsets = Doc(en_vocab, words=words).to_array("IDX")
 | 
						|
    assert offsets[0] == 0
 | 
						|
    assert offsets[1] == 3
 | 
						|
    assert offsets[2] == 11
 | 
						|
 | 
						|
 | 
						|
def test_doc_from_array_heads_in_bounds(en_vocab):
 | 
						|
    """Test that Doc.from_array doesn't set heads that are out of bounds."""
 | 
						|
    words = ["This", "is", "a", "sentence", "."]
 | 
						|
    doc = Doc(en_vocab, words=words)
 | 
						|
    for token in doc:
 | 
						|
        token.head = doc[0]
 | 
						|
 | 
						|
    # correct
 | 
						|
    arr = doc.to_array(["HEAD"])
 | 
						|
    doc_from_array = Doc(en_vocab, words=words)
 | 
						|
    doc_from_array.from_array(["HEAD"], arr)
 | 
						|
 | 
						|
    # head before start
 | 
						|
    arr = doc.to_array(["HEAD"])
 | 
						|
    arr[0] = -1
 | 
						|
    doc_from_array = Doc(en_vocab, words=words)
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        doc_from_array.from_array(["HEAD"], arr)
 | 
						|
 | 
						|
    # head after end
 | 
						|
    arr = doc.to_array(["HEAD"])
 | 
						|
    arr[0] = 5
 | 
						|
    doc_from_array = Doc(en_vocab, words=words)
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        doc_from_array.from_array(["HEAD"], arr)
 |