spaCy/spacy/syntax/_parser_model.pyx
2018-05-07 16:59:38 +02:00

400 lines
14 KiB
Cython

# cython: infer_types=True
# cython: cdivision=True
# cython: boundscheck=False
# coding: utf-8
from __future__ import unicode_literals, print_function
from collections import OrderedDict
import ujson
import json
import numpy
cimport cython.parallel
import cytoolz
import numpy.random
cimport numpy as np
from libc.math cimport exp
from libcpp.vector cimport vector
from libc.string cimport memset, memcpy
from libc.stdlib cimport calloc, free, realloc
from cymem.cymem cimport Pool
from thinc.typedefs cimport weight_t, class_t, hash_t
from thinc.extra.search cimport Beam
from thinc.api import chain, clone
from thinc.v2v import Model, Maxout, Affine
from thinc.misc import LayerNorm
from thinc.neural.ops import CupyOps
from thinc.neural.util import get_array_module
from thinc.linalg cimport Vec, VecVec
from thinc cimport openblas
from .._ml import zero_init, PrecomputableAffine, Tok2Vec, flatten
from .._ml import link_vectors_to_models, create_default_optimizer
from ..compat import json_dumps, copy_array
from ..tokens.doc cimport Doc
from ..gold cimport GoldParse
from ..errors import Errors, TempErrors
from .. import util
from .stateclass cimport StateClass
from .transition_system cimport Transition
from . import nonproj
cdef WeightsC get_c_weights(model) except *:
cdef WeightsC output
cdef precompute_hiddens state2vec = model.state2vec
output.feat_weights = state2vec.get_feat_weights()
output.feat_bias = <const float*>state2vec.bias.data
cdef np.ndarray vec2scores_W = model.vec2scores.W
cdef np.ndarray vec2scores_b = model.vec2scores.b
output.hidden_weights = <const float*>vec2scores_W.data
output.hidden_bias = <const float*>vec2scores_b.data
cdef np.ndarray tokvecs = model.tokvecs
output.vectors = <float*>tokvecs.data
return output
cdef SizesC get_c_sizes(model, int batch_size) except *:
cdef SizesC output
output.states = batch_size
output.classes = model.nO
output.hiddens = model.nH
output.pieces = model.nP
output.feats = model.nF
output.embed_width = model.nI
return output
cdef void resize_activations(ActivationsC* A, SizesC n) nogil:
if n.states <= A._max_size:
A._curr_size = n.states
return
if A._max_size == 0:
A.token_ids = <int*>calloc(n.states * n.feats, sizeof(A.token_ids[0]))
A.vectors = <float*>calloc(n.states * n.hiddens, sizeof(A.hiddens[0]))
A.scores = <float*>calloc(n.states * n.classes, sizeof(A.scores[0]))
A.unmaxed = <float*>calloc(n.states * n.hiddens * n.feats, sizeof(A.unmaxed[0]))
A.is_valid = <int*>calloc(n.states * n.classes, sizeof(A.is_valid[0]))
A._max_size = n.states
else:
A.token_ids = <int*>realloc(A.token_ids,
n.states * n.feats * sizeof(A.token_ids[0]))
A.vectors = <float*>realloc(A.vectors,
n.states * n.embed_width * sizeof(A.vectors[0]))
A.scores = <float*>realloc(A.scores,
n.states * n.classes * sizeof(A.scores[0]))
A.unmaxed = <float*>realloc(A.unmaxed,
n.states * n.hiddens * n.feats * sizeof(A.unmaxed[0]))
A.is_valid = <int*>realloc(A.is_valid,
n.states * n.classes * sizeof(A.is_valid[0]))
A._max_size = n.states
A._curr_size = n.states
cdef void predict_states(ActivationsC* A, StateC** states,
const WeightsC* W, SizesC n) nogil:
resize_activations(A, n)
for i in range(n.states):
state = states[i]
state.set_context_tokens(A.token_ids, n.feats)
memset(A.unmaxed, 0, n.hiddens * n.pieces * sizeof(float))
sum_state_features(A.unmaxed,
W.feat_weights, A.token_ids, 1, n.feats, n.hiddens * n.pieces)
VecVec.add_i(A.unmaxed,
W.feat_bias, 1., n.hiddens * n.pieces)
state_vector = &A.vectors[i*n.hiddens]
for j in range(n.hiddens):
index = j * n.pieces
which = Vec.arg_max(&A.unmaxed[index], n.pieces)
state_vector[j] = A.unmaxed[index + which]
# Compute hidden-to-output
openblas.simple_gemm(A.scores, n.states, n.classes,
A.vectors, n.states, n.hiddens,
W.hidden_weights, n.hiddens, n.classes, 0, 0)
# Add bias
for i in range(n.states):
VecVec.add_i(&A.scores[i*n.classes],
W.hidden_bias, 1., n.classes)
cdef void sum_state_features(float* output,
const float* cached, const int* token_ids, int B, int F, int O) nogil:
cdef int idx, b, f, i
cdef const float* feature
padding = cached
cached += F * O
cdef int id_stride = F*O
cdef float one = 1.
for b in range(B):
for f in range(F):
if token_ids[f] < 0:
feature = &padding[f*O]
else:
idx = token_ids[f] * id_stride + f*O
feature = &cached[idx]
openblas.simple_axpy(&output[b*O], O,
feature, one)
token_ids += F
cdef void cpu_log_loss(float* d_scores,
const float* costs, const int* is_valid, const float* scores,
int O) nogil:
"""Do multi-label log loss"""
cdef double max_, gmax, Z, gZ
best = arg_max_if_gold(scores, costs, is_valid, O)
guess = arg_max_if_valid(scores, is_valid, O)
Z = 1e-10
gZ = 1e-10
max_ = scores[guess]
gmax = scores[best]
for i in range(O):
if is_valid[i]:
Z += exp(scores[i] - max_)
if costs[i] <= costs[best]:
gZ += exp(scores[i] - gmax)
for i in range(O):
if not is_valid[i]:
d_scores[i] = 0.
elif costs[i] <= costs[best]:
d_scores[i] = (exp(scores[i]-max_) / Z) - (exp(scores[i]-gmax)/gZ)
else:
d_scores[i] = exp(scores[i]-max_) / Z
cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs,
const int* is_valid, int n) nogil:
# Find minimum cost
cdef float cost = 1
for i in range(n):
if is_valid[i] and costs[i] < cost:
cost = costs[i]
# Now find best-scoring with that cost
cdef int best = -1
for i in range(n):
if costs[i] <= cost and is_valid[i]:
if best == -1 or scores[i] > scores[best]:
best = i
return best
cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) nogil:
cdef int best = -1
for i in range(n):
if is_valid[i] >= 1:
if best == -1 or scores[i] > scores[best]:
best = i
return best
class ParserModel(Model):
def __init__(self, tok2vec, lower_model, upper_model):
Model.__init__(self)
self._layers = [tok2vec, lower_model, upper_model]
@property
def nO(self):
return self._layers[-1].nO
@property
def nI(self):
return self._layers[1].nI
@property
def nH(self):
return self._layers[1].nO
@property
def nF(self):
return self._layers[1].nF
@property
def nP(self):
return self._layers[1].nP
def begin_update(self, docs, drop=0.):
step_model = ParserStepModel(docs, self._layers, drop=drop)
def finish_parser_update(golds, sgd=None):
step_model.make_updates(sgd)
return None
return step_model, finish_parser_update
@property
def tok2vec(self):
return self._layers[0]
@property
def lower(self):
return self._layers[1]
@property
def upper(self):
return self._layers[2]
class ParserStepModel(Model):
def __init__(self, docs, layers, drop=0.):
self.tokvecs, self.bp_tokvecs = layers[0].begin_update(docs, drop=drop)
self.state2vec = precompute_hiddens(len(docs), self.tokvecs, layers[1],
drop=drop)
self.vec2scores = layers[-1]
self.cuda_stream = util.get_cuda_stream()
self.backprops = []
def begin_update(self, states, drop=0.):
token_ids = self.get_token_ids(states)
vector, get_d_tokvecs = self.state2vec.begin_update(token_ids, drop=0.0)
vector, bp_dropout = self.ops.dropout(vector, drop)
scores, get_d_vector = self.vec2scores.begin_update(vector, drop=drop)
def backprop_parser_step(d_scores, sgd=None):
d_vector = bp_dropout(get_d_vector(d_scores, sgd=sgd))
if isinstance(self.ops, CupyOps) \
and not isinstance(token_ids, self.state2vec.ops.xp.ndarray):
# Move token_ids and d_vector to GPU, asynchronously
self.backprops.append((
util.get_async(self.cuda_stream, token_ids),
util.get_async(self.cuda_stream, d_vector),
get_d_tokvecs
))
else:
self.backprops.append((token_ids, d_vector, get_d_tokvecs))
return None
return scores, backprop_parser_step
def get_token_ids(self, states):
cdef StateClass state
cdef int n_tokens = self.state2vec.nF
cdef np.ndarray ids = numpy.zeros((len(states), n_tokens),
dtype='i', order='C')
c_ids = <int*>ids.data
for i, state in enumerate(states):
if not state.is_final():
state.c.set_context_tokens(c_ids, n_tokens)
c_ids += ids.shape[1]
return ids
def make_updates(self, sgd):
# Tells CUDA to block, so our async copies complete.
if self.cuda_stream is not None:
self.cuda_stream.synchronize()
# Add a padding vector to the d_tokvecs gradient, so that missing
# values don't affect the real gradient.
d_tokvecs = self.ops.allocate((self.tokvecs.shape[0]+1, self.tokvecs.shape[1]))
for ids, d_vector, bp_vector in self.backprops:
d_state_features = bp_vector((d_vector, ids), sgd=sgd)
ids = ids.flatten()
d_state_features = d_state_features.reshape(
(ids.size, d_state_features.shape[2]))
self.ops.scatter_add(d_tokvecs, ids,
d_state_features)
# Padded -- see update()
self.bp_tokvecs(d_tokvecs[:-1], sgd=sgd)
return d_tokvecs
cdef class precompute_hiddens:
"""Allow a model to be "primed" by pre-computing input features in bulk.
This is used for the parser, where we want to take a batch of documents,
and compute vectors for each (token, position) pair. These vectors can then
be reused, especially for beam-search.
Let's say we're using 12 features for each state, e.g. word at start of
buffer, three words on stack, their children, etc. In the normal arc-eager
system, a document of length N is processed in 2*N states. This means we'll
create 2*N*12 feature vectors --- but if we pre-compute, we only need
N*12 vector computations. The saving for beam-search is much better:
if we have a beam of k, we'll normally make 2*N*12*K computations --
so we can save the factor k. This also gives a nice CPU/GPU division:
we can do all our hard maths up front, packed into large multiplications,
and do the hard-to-program parsing on the CPU.
"""
cdef readonly int nF, nO, nP
cdef bint _is_synchronized
cdef public object ops
cdef np.ndarray _features
cdef np.ndarray _cached
cdef np.ndarray bias
cdef object _cuda_stream
cdef object _bp_hiddens
def __init__(self, batch_size, tokvecs, lower_model, cuda_stream=None,
drop=0.):
gpu_cached, bp_features = lower_model.begin_update(tokvecs, drop=drop)
cdef np.ndarray cached
if not isinstance(gpu_cached, numpy.ndarray):
# Note the passing of cuda_stream here: it lets
# cupy make the copy asynchronously.
# We then have to block before first use.
cached = gpu_cached.get(stream=cuda_stream)
else:
cached = gpu_cached
if not isinstance(lower_model.b, numpy.ndarray):
self.bias = lower_model.b.get()
else:
self.bias = lower_model.b
self.nF = cached.shape[1]
self.nP = getattr(lower_model, 'nP', 1)
self.nO = cached.shape[2]
self.ops = lower_model.ops
self._is_synchronized = False
self._cuda_stream = cuda_stream
self._cached = cached
self._bp_hiddens = bp_features
cdef const float* get_feat_weights(self) except NULL:
if not self._is_synchronized and self._cuda_stream is not None:
self._cuda_stream.synchronize()
self._is_synchronized = True
return <float*>self._cached.data
def __call__(self, X):
return self.begin_update(X)[0]
def begin_update(self, token_ids, drop=0.):
cdef np.ndarray state_vector = numpy.zeros(
(token_ids.shape[0], self.nO, self.nP), dtype='f')
# This is tricky, but (assuming GPU available);
# - Input to forward on CPU
# - Output from forward on CPU
# - Input to backward on GPU!
# - Output from backward on GPU
bp_hiddens = self._bp_hiddens
feat_weights = self.get_feat_weights()
cdef int[:, ::1] ids = token_ids
sum_state_features(<float*>state_vector.data,
feat_weights, &ids[0,0],
token_ids.shape[0], self.nF, self.nO*self.nP)
state_vector += self.bias
state_vector, bp_nonlinearity = self._nonlinearity(state_vector)
def backward(d_state_vector_ids, sgd=None):
d_state_vector, token_ids = d_state_vector_ids
d_state_vector = bp_nonlinearity(d_state_vector, sgd)
# This will usually be on GPU
if not isinstance(d_state_vector, self.ops.xp.ndarray):
d_state_vector = self.ops.xp.array(d_state_vector)
d_tokens = bp_hiddens((d_state_vector, token_ids), sgd)
return d_tokens
return state_vector, backward
def _nonlinearity(self, state_vector):
if self.nP == 1:
state_vector = state_vector.reshape(state_vector.shape[:-1])
mask = state_vector >= 0.
state_vector *= mask
else:
state_vector, mask = self.ops.maxout(state_vector)
def backprop_nonlinearity(d_best, sgd=None):
if self.nP == 1:
d_best *= mask
d_best = d_best.reshape((d_best.shape + (1,)))
return d_best
else:
return self.ops.backprop_maxout(d_best, mask, self.nP)
return state_vector, backprop_nonlinearity