mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	* Fix scoring normalization (#7629) * fix scoring normalization * score weights by total sum instead of per component * cleanup * more cleanup * Use a context manager when reading model (fix #7036) (#8244) * Fix other open calls without context managers (#8245) * Don't add duplicate patterns all the time in EntityRuler (fix #8216) (#8246) * Don't add duplicate patterns (fix #8216) * Refactor EntityRuler init This simplifies the EntityRuler init code. This is helpful as prep for allowing the EntityRuler to reset itself. * Make EntityRuler.clear reset matchers Includes a new test for this. * Tidy PhraseMatcher instantiation Since the attr can be None safely now, the guard if is no longer required here. Also renamed the `_validate` attr. Maybe it's not needed? * Fix NER test * Add test to make sure patterns aren't increasing * Move test to regression tests * Exclude generated .cpp files from package (#8271) * Fix non-deterministic deduplication in Greek lemmatizer (#8421) * Fix setting empty entities in Example.from_dict (#8426) * Filter W036 for entity ruler, etc. (#8424) * Preserve paths.vectors/initialize.vectors setting in quickstart template * Various fixes for spans in Docs.from_docs (#8487) * Fix spans offsets if a doc ends in a single space and no space is inserted * Also include spans key in merged doc for empty spans lists * Fix duplicate spacy package CLI opts (#8551) Use `-c` for `--code` and not additionally for `--create-meta`, in line with the docs. * Raise an error for textcat with <2 labels (#8584) * Raise an error for textcat with <2 labels Raise an error if initializing a `textcat` component without at least two labels. * Add similar note to docs * Update positive_label description in API docs * Add Macedonian models to website (#8637) * Fix Azerbaijani init, extend lang init tests (#8656) * Extend langs in initialize tests * Fix az init * Fix ru/uk lemmatizer mp with spawn (#8657) Use an instance variable instead a class variable for the morphological analzyer so that multiprocessing with spawn is possible. * Use 0-vector for OOV lexemes (#8639) * Set version to v3.0.7 Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>
		
			
				
	
	
		
			243 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			243 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import Optional, Iterable, Tuple, List, Callable, TYPE_CHECKING
 | |
| from thinc.api import chain, Maxout, LayerNorm, Softmax, Linear, zero_init, Model
 | |
| from thinc.api import MultiSoftmax, list2array
 | |
| from thinc.api import to_categorical, CosineDistance, L2Distance
 | |
| 
 | |
| from ...util import registry, OOV_RANK
 | |
| from ...errors import Errors
 | |
| from ...attrs import ID
 | |
| 
 | |
| import numpy
 | |
| from functools import partial
 | |
| 
 | |
| if TYPE_CHECKING:
 | |
|     # This lets us add type hints for mypy etc. without causing circular imports
 | |
|     from ...vocab import Vocab  # noqa: F401
 | |
|     from ...tokens.doc import Doc  # noqa: F401
 | |
| 
 | |
| 
 | |
| @registry.architectures("spacy.PretrainVectors.v1")
 | |
| def create_pretrain_vectors(
 | |
|     maxout_pieces: int, hidden_size: int, loss: str
 | |
| ) -> Callable[["Vocab", Model], Model]:
 | |
|     def create_vectors_objective(vocab: "Vocab", tok2vec: Model) -> Model:
 | |
|         if vocab.vectors.data.shape[1] == 0:
 | |
|             raise ValueError(Errors.E875)
 | |
|         model = build_cloze_multi_task_model(
 | |
|             vocab, tok2vec, hidden_size=hidden_size, maxout_pieces=maxout_pieces
 | |
|         )
 | |
|         model.attrs["loss"] = create_vectors_loss()
 | |
|         return model
 | |
| 
 | |
|     def create_vectors_loss() -> Callable:
 | |
|         if loss == "cosine":
 | |
|             distance = CosineDistance(normalize=True, ignore_zeros=True)
 | |
|             return partial(get_vectors_loss, distance=distance)
 | |
|         elif loss == "L2":
 | |
|             distance = L2Distance(normalize=True)
 | |
|             return partial(get_vectors_loss, distance=distance)
 | |
|         else:
 | |
|             raise ValueError(Errors.E906.format(found=loss, supported="'cosine', 'L2'"))
 | |
| 
 | |
|     return create_vectors_objective
 | |
| 
 | |
| 
 | |
| @registry.architectures("spacy.PretrainCharacters.v1")
 | |
| def create_pretrain_characters(
 | |
|     maxout_pieces: int, hidden_size: int, n_characters: int
 | |
| ) -> Callable[["Vocab", Model], Model]:
 | |
|     def create_characters_objective(vocab: "Vocab", tok2vec: Model) -> Model:
 | |
|         model = build_cloze_characters_multi_task_model(
 | |
|             vocab,
 | |
|             tok2vec,
 | |
|             hidden_size=hidden_size,
 | |
|             maxout_pieces=maxout_pieces,
 | |
|             nr_char=n_characters,
 | |
|         )
 | |
|         model.attrs["loss"] = partial(get_characters_loss, nr_char=n_characters)
 | |
|         return model
 | |
| 
 | |
|     return create_characters_objective
 | |
| 
 | |
| 
 | |
| def get_vectors_loss(ops, docs, prediction, distance):
 | |
|     """Compute a loss based on a distance between the documents' vectors and
 | |
|     the prediction.
 | |
|     """
 | |
|     # The simplest way to implement this would be to vstack the
 | |
|     # token.vector values, but that's a bit inefficient, especially on GPU.
 | |
|     # Instead we fetch the index into the vectors table for each of our tokens,
 | |
|     # and look them up all at once. This prevents data copying.
 | |
|     ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs])
 | |
|     target = docs[0].vocab.vectors.data[ids]
 | |
|     target[ids == OOV_RANK] = 0
 | |
|     d_target, loss = distance(prediction, target)
 | |
|     return loss, d_target
 | |
| 
 | |
| 
 | |
| def get_characters_loss(ops, docs, prediction, nr_char):
 | |
|     """Compute a loss based on a number of characters predicted from the docs."""
 | |
|     target_ids = numpy.vstack([doc.to_utf8_array(nr_char=nr_char) for doc in docs])
 | |
|     target_ids = target_ids.reshape((-1,))
 | |
|     target = ops.asarray(to_categorical(target_ids, n_classes=256), dtype="f")
 | |
|     target = target.reshape((-1, 256 * nr_char))
 | |
|     diff = prediction - target
 | |
|     loss = (diff ** 2).sum()
 | |
|     d_target = diff / float(prediction.shape[0])
 | |
|     return loss, d_target
 | |
| 
 | |
| 
 | |
| def build_multi_task_model(
 | |
|     tok2vec: Model,
 | |
|     maxout_pieces: int,
 | |
|     token_vector_width: int,
 | |
|     nO: Optional[int] = None,
 | |
| ) -> Model:
 | |
|     softmax = Softmax(nO=nO, nI=token_vector_width * 2)
 | |
|     model = chain(
 | |
|         tok2vec,
 | |
|         Maxout(
 | |
|             nO=token_vector_width * 2,
 | |
|             nI=token_vector_width,
 | |
|             nP=maxout_pieces,
 | |
|             dropout=0.0,
 | |
|         ),
 | |
|         LayerNorm(token_vector_width * 2),
 | |
|         softmax,
 | |
|     )
 | |
|     model.set_ref("tok2vec", tok2vec)
 | |
|     model.set_ref("output_layer", softmax)
 | |
|     return model
 | |
| 
 | |
| 
 | |
| def build_cloze_multi_task_model(
 | |
|     vocab: "Vocab", tok2vec: Model, maxout_pieces: int, hidden_size: int
 | |
| ) -> Model:
 | |
|     nO = vocab.vectors.data.shape[1]
 | |
|     output_layer = chain(
 | |
|         list2array(),
 | |
|         Maxout(
 | |
|             nO=hidden_size,
 | |
|             nI=tok2vec.get_dim("nO"),
 | |
|             nP=maxout_pieces,
 | |
|             normalize=True,
 | |
|             dropout=0.0,
 | |
|         ),
 | |
|         Linear(nO=nO, nI=hidden_size, init_W=zero_init),
 | |
|     )
 | |
|     model = chain(tok2vec, output_layer)
 | |
|     model = build_masked_language_model(vocab, model)
 | |
|     model.set_ref("tok2vec", tok2vec)
 | |
|     model.set_ref("output_layer", output_layer)
 | |
|     return model
 | |
| 
 | |
| 
 | |
| def build_cloze_characters_multi_task_model(
 | |
|     vocab: "Vocab", tok2vec: Model, maxout_pieces: int, hidden_size: int, nr_char: int
 | |
| ) -> Model:
 | |
|     output_layer = chain(
 | |
|         list2array(),
 | |
|         Maxout(nO=hidden_size, nP=maxout_pieces),
 | |
|         LayerNorm(nI=hidden_size),
 | |
|         MultiSoftmax([256] * nr_char, nI=hidden_size),
 | |
|     )
 | |
|     model = build_masked_language_model(vocab, chain(tok2vec, output_layer))
 | |
|     model.set_ref("tok2vec", tok2vec)
 | |
|     model.set_ref("output_layer", output_layer)
 | |
|     return model
 | |
| 
 | |
| 
 | |
| def build_masked_language_model(
 | |
|     vocab: "Vocab", wrapped_model: Model, mask_prob: float = 0.15
 | |
| ) -> Model:
 | |
|     """Convert a model into a BERT-style masked language model"""
 | |
|     random_words = _RandomWords(vocab)
 | |
| 
 | |
|     def mlm_forward(model, docs, is_train):
 | |
|         mask, docs = _apply_mask(docs, random_words, mask_prob=mask_prob)
 | |
|         mask = model.ops.asarray(mask).reshape((mask.shape[0], 1))
 | |
|         output, backprop = model.layers[0](docs, is_train)
 | |
| 
 | |
|         def mlm_backward(d_output):
 | |
|             d_output *= 1 - mask
 | |
|             return backprop(d_output)
 | |
| 
 | |
|         return output, mlm_backward
 | |
| 
 | |
|     def mlm_initialize(model: Model, X=None, Y=None):
 | |
|         wrapped = model.layers[0]
 | |
|         wrapped.initialize(X=X, Y=Y)
 | |
|         for dim in wrapped.dim_names:
 | |
|             if wrapped.has_dim(dim):
 | |
|                 model.set_dim(dim, wrapped.get_dim(dim))
 | |
| 
 | |
|     mlm_model = Model(
 | |
|         "masked-language-model",
 | |
|         mlm_forward,
 | |
|         layers=[wrapped_model],
 | |
|         init=mlm_initialize,
 | |
|         refs={"wrapped": wrapped_model},
 | |
|         dims={dim: None for dim in wrapped_model.dim_names},
 | |
|     )
 | |
|     mlm_model.set_ref("wrapped", wrapped_model)
 | |
|     return mlm_model
 | |
| 
 | |
| 
 | |
| class _RandomWords:
 | |
|     def __init__(self, vocab: "Vocab") -> None:
 | |
|         self.words = [lex.text for lex in vocab if lex.prob != 0.0]
 | |
|         self.probs = [lex.prob for lex in vocab if lex.prob != 0.0]
 | |
|         self.words = self.words[:10000]
 | |
|         self.probs = self.probs[:10000]
 | |
|         self.probs = numpy.exp(numpy.array(self.probs, dtype="f"))
 | |
|         self.probs /= self.probs.sum()
 | |
|         self._cache = []
 | |
| 
 | |
|     def next(self) -> str:
 | |
|         if not self._cache:
 | |
|             self._cache.extend(
 | |
|                 numpy.random.choice(len(self.words), 10000, p=self.probs)
 | |
|             )
 | |
|         index = self._cache.pop()
 | |
|         return self.words[index]
 | |
| 
 | |
| 
 | |
| def _apply_mask(
 | |
|     docs: Iterable["Doc"], random_words: _RandomWords, mask_prob: float = 0.15
 | |
| ) -> Tuple[numpy.ndarray, List["Doc"]]:
 | |
|     # This needs to be here to avoid circular imports
 | |
|     from ...tokens.doc import Doc  # noqa: F811
 | |
| 
 | |
|     N = sum(len(doc) for doc in docs)
 | |
|     mask = numpy.random.uniform(0.0, 1.0, (N,))
 | |
|     mask = mask >= mask_prob
 | |
|     i = 0
 | |
|     masked_docs = []
 | |
|     for doc in docs:
 | |
|         words = []
 | |
|         for token in doc:
 | |
|             if not mask[i]:
 | |
|                 word = _replace_word(token.text, random_words)
 | |
|             else:
 | |
|                 word = token.text
 | |
|             words.append(word)
 | |
|             i += 1
 | |
|         spaces = [bool(w.whitespace_) for w in doc]
 | |
|         # NB: If you change this implementation to instead modify
 | |
|         # the docs in place, take care that the IDs reflect the original
 | |
|         # words. Currently we use the original docs to make the vectors
 | |
|         # for the target, so we don't lose the original tokens. But if
 | |
|         # you modified the docs in place here, you would.
 | |
|         masked_docs.append(Doc(doc.vocab, words=words, spaces=spaces))
 | |
|     return mask, masked_docs
 | |
| 
 | |
| 
 | |
| def _replace_word(word: str, random_words: _RandomWords, mask: str = "[MASK]") -> str:
 | |
|     roll = numpy.random.random()
 | |
|     if roll < 0.8:
 | |
|         return mask
 | |
|     elif roll < 0.9:
 | |
|         return random_words.next()
 | |
|     else:
 | |
|         return word
 |