mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-27 10:26:35 +03:00
57 lines
1.6 KiB
Python
57 lines
1.6 KiB
Python
from spacy.pipeline import EntityRecognizer
|
|
from spacy.tokens import Span
|
|
import pytest
|
|
|
|
from ..util import get_doc
|
|
from spacy.pipeline.defaults import default_ner
|
|
|
|
|
|
def test_doc_add_entities_set_ents_iob(en_vocab):
|
|
text = ["This", "is", "a", "lion"]
|
|
doc = get_doc(en_vocab, text)
|
|
config = {
|
|
"learn_tokens": False,
|
|
"min_action_freq": 30,
|
|
"beam_width": 1,
|
|
"beam_update_prob": 1.0,
|
|
}
|
|
ner = EntityRecognizer(en_vocab, default_ner(), **config)
|
|
ner.begin_training([])
|
|
ner(doc)
|
|
assert len(list(doc.ents)) == 0
|
|
assert [w.ent_iob_ for w in doc] == (["O"] * len(doc))
|
|
|
|
doc.ents = [(doc.vocab.strings["ANIMAL"], 3, 4)]
|
|
assert [w.ent_iob_ for w in doc] == ["O", "O", "O", "B"]
|
|
|
|
doc.ents = [(doc.vocab.strings["WORD"], 0, 2)]
|
|
assert [w.ent_iob_ for w in doc] == ["B", "I", "O", "O"]
|
|
|
|
|
|
def test_ents_reset(en_vocab):
|
|
text = ["This", "is", "a", "lion"]
|
|
doc = get_doc(en_vocab, text)
|
|
config = {
|
|
"learn_tokens": False,
|
|
"min_action_freq": 30,
|
|
"beam_width": 1,
|
|
"beam_update_prob": 1.0,
|
|
}
|
|
ner = EntityRecognizer(en_vocab, default_ner(), **config)
|
|
ner.begin_training([])
|
|
ner(doc)
|
|
assert [t.ent_iob_ for t in doc] == (["O"] * len(doc))
|
|
doc.ents = list(doc.ents)
|
|
assert [t.ent_iob_ for t in doc] == (["O"] * len(doc))
|
|
|
|
|
|
def test_add_overlapping_entities(en_vocab):
|
|
text = ["Louisiana", "Office", "of", "Conservation"]
|
|
doc = get_doc(en_vocab, text)
|
|
entity = Span(doc, 0, 4, label=391)
|
|
doc.ents = [entity]
|
|
|
|
new_entity = Span(doc, 0, 1, label=392)
|
|
with pytest.raises(ValueError):
|
|
doc.ents = list(doc.ents) + [new_entity]
|