mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-10 09:16:31 +03:00
a5cd203284
* Reduce stored lexemes data, move feats to lookups * Move non-derivable lexemes features (`norm / cluster / prob`) to `spacy-lookups-data` as lookups * Get/set `norm` in both lookups and `LexemeC`, serialize in lookups * Remove `cluster` and `prob` from `LexemesC`, get/set/serialize in lookups only * Remove serialization of lexemes data as `vocab/lexemes.bin` * Remove `SerializedLexemeC` * Remove `Lexeme.to_bytes/from_bytes` * Modify normalization exception loading: * Always create `Vocab.lookups` table `lexeme_norm` for normalization exceptions * Load base exceptions from `lang.norm_exceptions`, but load language-specific exceptions from lookups * Set `lex_attr_getter[NORM]` including new lookups table in `BaseDefaults.create_vocab()` and when deserializing `Vocab` * Remove all cached lexemes when deserializing vocab to override existing normalizations with the new normalizations (as a replacement for the previous step that replaced all lexemes data with the deserialized data) * Skip English normalization test Skip English normalization test because the data is now in `spacy-lookups-data`. * Remove norm exceptions Moved to spacy-lookups-data. * Move norm exceptions test to spacy-lookups-data * Load extra lookups from spacy-lookups-data lazily Load extra lookups (currently for cluster and prob) lazily from the entry point `lg_extra` as `Vocab.lookups_extra`. * Skip creating lexeme cache on load To improve model loading times, do not create the full lexeme cache when loading. The lexemes will be created on demand when processing. * Identify numeric values in Lexeme.set_attrs() With the removal of a special case for `PROB`, also identify `float` to avoid trying to convert it with the `StringStore`. * Skip lexeme cache init in from_bytes * Unskip and update lookups tests for python3.6+ * Update vocab pickle to include lookups_extra * Update vocab serialization tests Check strings rather than lexemes since lexemes aren't initialized automatically, account for addition of "_SP". * Re-skip lookups test because of python3.5 * Skip PROB/float values in Lexeme.set_attrs * Convert is_oov from lexeme flag to lex in vectors Instead of storing `is_oov` as a lexeme flag, `is_oov` reports whether the lexeme has a vector. Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
56 lines
1.5 KiB
Python
56 lines
1.5 KiB
Python
# coding: utf8
|
|
from __future__ import unicode_literals
|
|
|
|
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
|
from .tag_map import TAG_MAP
|
|
from .stop_words import STOP_WORDS
|
|
from .lex_attrs import LEX_ATTRS
|
|
|
|
from ...attrs import LANG
|
|
from ...language import Language
|
|
from ...tokens import Doc
|
|
from ...util import DummyTokenizer
|
|
|
|
|
|
class ThaiTokenizer(DummyTokenizer):
|
|
def __init__(self, cls, nlp=None):
|
|
try:
|
|
from pythainlp.tokenize import word_tokenize
|
|
except ImportError:
|
|
raise ImportError(
|
|
"The Thai tokenizer requires the PyThaiNLP library: "
|
|
"https://github.com/PyThaiNLP/pythainlp"
|
|
)
|
|
|
|
self.word_tokenize = word_tokenize
|
|
self.vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp)
|
|
|
|
def __call__(self, text):
|
|
words = list(self.word_tokenize(text))
|
|
spaces = [False] * len(words)
|
|
return Doc(self.vocab, words=words, spaces=spaces)
|
|
|
|
|
|
class ThaiDefaults(Language.Defaults):
|
|
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
|
|
lex_attr_getters.update(LEX_ATTRS)
|
|
lex_attr_getters[LANG] = lambda _text: "th"
|
|
tokenizer_exceptions = dict(TOKENIZER_EXCEPTIONS)
|
|
tag_map = TAG_MAP
|
|
stop_words = STOP_WORDS
|
|
|
|
@classmethod
|
|
def create_tokenizer(cls, nlp=None):
|
|
return ThaiTokenizer(cls, nlp)
|
|
|
|
|
|
class Thai(Language):
|
|
lang = "th"
|
|
Defaults = ThaiDefaults
|
|
|
|
def make_doc(self, text):
|
|
return self.tokenizer(text)
|
|
|
|
|
|
__all__ = ["Thai"]
|