1
1
mirror of https://github.com/explosion/spaCy.git synced 2025-04-01 07:44:12 +03:00
spaCy/spacy/pipeline/senter.pyx
Adriane Boyd d722a439aa
Remove unneeded methods in senter and morphologizer ()
Now that the tagger doesn't manage the tag map, the child classes senter
and morphologizer don't need to override the serialization methods.
2020-09-16 17:39:41 +02:00

173 lines
6.2 KiB
Cython

# cython: infer_types=True, profile=True, binding=True
from itertools import islice
import srsly
from thinc.api import Model, SequenceCategoricalCrossentropy, Config
from ..tokens.doc cimport Doc
from .pipe import deserialize_config
from .tagger import Tagger
from ..language import Language
from ..errors import Errors
from ..scorer import Scorer
from ..training import validate_examples
from .. import util
default_model_config = """
[model]
@architectures = "spacy.Tagger.v1"
[model.tok2vec]
@architectures = "spacy.HashEmbedCNN.v1"
pretrained_vectors = null
width = 12
depth = 1
embed_size = 2000
window_size = 1
maxout_pieces = 2
subword_features = true
"""
DEFAULT_SENTER_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"senter",
assigns=["token.is_sent_start"],
default_config={"model": DEFAULT_SENTER_MODEL},
scores=["sents_p", "sents_r", "sents_f"],
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
)
def make_senter(nlp: Language, name: str, model: Model):
return SentenceRecognizer(nlp.vocab, model, name)
class SentenceRecognizer(Tagger):
"""Pipeline component for sentence segmentation.
DOCS: https://nightly.spacy.io/api/sentencerecognizer
"""
def __init__(self, vocab, model, name="senter"):
"""Initialize a sentence recognizer.
vocab (Vocab): The shared vocabulary.
model (thinc.api.Model): The Thinc Model powering the pipeline component.
name (str): The component instance name, used to add entries to the
losses during training.
DOCS: https://nightly.spacy.io/api/sentencerecognizer#init
"""
self.vocab = vocab
self.model = model
self.name = name
self._rehearsal_model = None
self.cfg = {}
@property
def labels(self):
"""RETURNS (Tuple[str]): The labels."""
# labels are numbered by index internally, so this matches GoldParse
# and Example where the sentence-initial tag is 1 and other positions
# are 0
return tuple(["I", "S"])
def set_annotations(self, docs, batch_tag_ids):
"""Modify a batch of documents, using pre-computed scores.
docs (Iterable[Doc]): The documents to modify.
batch_tag_ids: The IDs to set, produced by SentenceRecognizer.predict.
DOCS: https://nightly.spacy.io/api/sentencerecognizer#set_annotations
"""
if isinstance(docs, Doc):
docs = [docs]
cdef Doc doc
for i, doc in enumerate(docs):
doc_tag_ids = batch_tag_ids[i]
if hasattr(doc_tag_ids, "get"):
doc_tag_ids = doc_tag_ids.get()
for j, tag_id in enumerate(doc_tag_ids):
# Don't clobber existing sentence boundaries
if doc.c[j].sent_start == 0:
if tag_id == 1:
doc.c[j].sent_start = 1
else:
doc.c[j].sent_start = -1
def get_loss(self, examples, scores):
"""Find the loss and gradient of loss for the batch of documents and
their predicted scores.
examples (Iterable[Examples]): The batch of examples.
scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient.
DOCS: https://nightly.spacy.io/api/sentencerecognizer#get_loss
"""
validate_examples(examples, "SentenceRecognizer.get_loss")
labels = self.labels
loss_func = SequenceCategoricalCrossentropy(names=labels, normalize=False)
truths = []
for eg in examples:
eg_truth = []
for x in eg.get_aligned("SENT_START"):
if x is None:
eg_truth.append(None)
elif x == 1:
eg_truth.append(labels[1])
else:
# anything other than 1: 0, -1, -1 as uint64
eg_truth.append(labels[0])
truths.append(eg_truth)
d_scores, loss = loss_func(scores, truths)
if self.model.ops.xp.isnan(loss):
raise ValueError("nan value when computing loss")
return float(loss), d_scores
def begin_training(self, get_examples, *, pipeline=None, sgd=None):
"""Initialize the pipe for training, using a representative set
of data examples.
get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects.
pipeline (List[Tuple[str, Callable]]): Optional list of pipeline
components that this component is part of. Corresponds to
nlp.pipeline.
sgd (thinc.api.Optimizer): Optional optimizer. Will be created with
create_optimizer if it doesn't exist.
RETURNS (thinc.api.Optimizer): The optimizer.
DOCS: https://nightly.spacy.io/api/sentencerecognizer#begin_training
"""
self._ensure_examples(get_examples)
doc_sample = []
label_sample = []
assert self.labels, Errors.E924.format(name=self.name)
for example in islice(get_examples(), 10):
doc_sample.append(example.x)
gold_tags = example.get_aligned("SENT_START")
gold_array = [[1.0 if tag == gold_tag else 0.0 for tag in self.labels] for gold_tag in gold_tags]
label_sample.append(self.model.ops.asarray(gold_array, dtype="float32"))
assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
assert len(label_sample) > 0, Errors.E923.format(name=self.name)
self.model.initialize(X=doc_sample, Y=label_sample)
if sgd is None:
sgd = self.create_optimizer()
return sgd
def add_label(self, label, values=None):
raise NotImplementedError
def score(self, examples, **kwargs):
"""Score a batch of examples.
examples (Iterable[Example]): The examples to score.
RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_spans.
DOCS: https://nightly.spacy.io/api/sentencerecognizer#score
"""
validate_examples(examples, "SentenceRecognizer.score")
results = Scorer.score_spans(examples, "sents", **kwargs)
del results["sents_per_type"]
return results