mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	* Use isort with Black profile * isort all the things * Fix import cycles as a result of import sorting * Add DOCBIN_ALL_ATTRS type definition * Add isort to requirements * Remove isort from build dependencies check * Typo
		
			
				
	
	
		
			204 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			204 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import warnings
 | |
| from typing import Any, Dict
 | |
| 
 | |
| import srsly
 | |
| 
 | |
| from .. import util
 | |
| from ..errors import Warnings
 | |
| from ..language import Language
 | |
| from ..matcher import Matcher
 | |
| from ..tokens import Doc
 | |
| 
 | |
| 
 | |
| @Language.component(
 | |
|     "merge_noun_chunks",
 | |
|     requires=["token.dep", "token.tag", "token.pos"],
 | |
|     retokenizes=True,
 | |
| )
 | |
| def merge_noun_chunks(doc: Doc) -> Doc:
 | |
|     """Merge noun chunks into a single token.
 | |
| 
 | |
|     doc (Doc): The Doc object.
 | |
|     RETURNS (Doc): The Doc object with merged noun chunks.
 | |
| 
 | |
|     DOCS: https://spacy.io/api/pipeline-functions#merge_noun_chunks
 | |
|     """
 | |
|     if not doc.has_annotation("DEP"):
 | |
|         return doc
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         for np in doc.noun_chunks:
 | |
|             attrs = {"tag": np.root.tag, "dep": np.root.dep}
 | |
|             retokenizer.merge(np, attrs=attrs)  # type: ignore[arg-type]
 | |
|     return doc
 | |
| 
 | |
| 
 | |
| @Language.component(
 | |
|     "merge_entities",
 | |
|     requires=["doc.ents", "token.ent_iob", "token.ent_type"],
 | |
|     retokenizes=True,
 | |
| )
 | |
| def merge_entities(doc: Doc):
 | |
|     """Merge entities into a single token.
 | |
| 
 | |
|     doc (Doc): The Doc object.
 | |
|     RETURNS (Doc): The Doc object with merged entities.
 | |
| 
 | |
|     DOCS: https://spacy.io/api/pipeline-functions#merge_entities
 | |
|     """
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         for ent in doc.ents:
 | |
|             attrs = {"tag": ent.root.tag, "dep": ent.root.dep, "ent_type": ent.label}
 | |
|             retokenizer.merge(ent, attrs=attrs)  # type: ignore[arg-type]
 | |
|     return doc
 | |
| 
 | |
| 
 | |
| @Language.component("merge_subtokens", requires=["token.dep"], retokenizes=True)
 | |
| def merge_subtokens(doc: Doc, label: str = "subtok") -> Doc:
 | |
|     """Merge subtokens into a single token.
 | |
| 
 | |
|     doc (Doc): The Doc object.
 | |
|     label (str): The subtoken dependency label.
 | |
|     RETURNS (Doc): The Doc object with merged subtokens.
 | |
| 
 | |
|     DOCS: https://spacy.io/api/pipeline-functions#merge_subtokens
 | |
|     """
 | |
|     # TODO: make stateful component with "label" config
 | |
|     merger = Matcher(doc.vocab)
 | |
|     merger.add("SUBTOK", [[{"DEP": label, "op": "+"}]])
 | |
|     matches = merger(doc)
 | |
|     spans = util.filter_spans([doc[start : end + 1] for _, start, end in matches])  # type: ignore[misc, operator]
 | |
|     with doc.retokenize() as retokenizer:
 | |
|         for span in spans:
 | |
|             retokenizer.merge(span)
 | |
|     return doc
 | |
| 
 | |
| 
 | |
| @Language.factory(
 | |
|     "token_splitter",
 | |
|     default_config={"min_length": 25, "split_length": 10},
 | |
|     retokenizes=True,
 | |
| )
 | |
| def make_token_splitter(
 | |
|     nlp: Language, name: str, *, min_length: int = 0, split_length: int = 0
 | |
| ):
 | |
|     return TokenSplitter(min_length=min_length, split_length=split_length)
 | |
| 
 | |
| 
 | |
| class TokenSplitter:
 | |
|     def __init__(self, min_length: int = 0, split_length: int = 0):
 | |
|         self.min_length = min_length
 | |
|         self.split_length = split_length
 | |
| 
 | |
|     def __call__(self, doc: Doc) -> Doc:
 | |
|         if self.min_length > 0 and self.split_length > 0:
 | |
|             with doc.retokenize() as retokenizer:
 | |
|                 for t in doc:
 | |
|                     if len(t.text) >= self.min_length:
 | |
|                         orths = []
 | |
|                         heads = []
 | |
|                         attrs = {}  # type: ignore[var-annotated]
 | |
|                         for i in range(0, len(t.text), self.split_length):
 | |
|                             orths.append(t.text[i : i + self.split_length])
 | |
|                             heads.append((t, i / self.split_length))
 | |
|                         retokenizer.split(t, orths, heads, attrs)  # type: ignore[arg-type]
 | |
|         return doc
 | |
| 
 | |
|     def _get_config(self) -> Dict[str, Any]:
 | |
|         return {
 | |
|             "min_length": self.min_length,
 | |
|             "split_length": self.split_length,
 | |
|         }
 | |
| 
 | |
|     def _set_config(self, config: Dict[str, Any] = {}) -> None:
 | |
|         self.min_length = config.get("min_length", 0)
 | |
|         self.split_length = config.get("split_length", 0)
 | |
| 
 | |
|     def to_bytes(self, **kwargs):
 | |
|         serializers = {
 | |
|             "cfg": lambda: srsly.json_dumps(self._get_config()),
 | |
|         }
 | |
|         return util.to_bytes(serializers, [])
 | |
| 
 | |
|     def from_bytes(self, data, **kwargs):
 | |
|         deserializers = {
 | |
|             "cfg": lambda b: self._set_config(srsly.json_loads(b)),
 | |
|         }
 | |
|         util.from_bytes(data, deserializers, [])
 | |
|         return self
 | |
| 
 | |
|     def to_disk(self, path, **kwargs):
 | |
|         path = util.ensure_path(path)
 | |
|         serializers = {
 | |
|             "cfg": lambda p: srsly.write_json(p, self._get_config()),
 | |
|         }
 | |
|         return util.to_disk(path, serializers, [])
 | |
| 
 | |
|     def from_disk(self, path, **kwargs):
 | |
|         path = util.ensure_path(path)
 | |
|         serializers = {
 | |
|             "cfg": lambda p: self._set_config(srsly.read_json(p)),
 | |
|         }
 | |
|         util.from_disk(path, serializers, [])
 | |
| 
 | |
| 
 | |
| @Language.factory(
 | |
|     "doc_cleaner",
 | |
|     default_config={"attrs": {"tensor": None, "_.trf_data": None}, "silent": True},
 | |
| )
 | |
| def make_doc_cleaner(nlp: Language, name: str, *, attrs: Dict[str, Any], silent: bool):
 | |
|     return DocCleaner(attrs, silent=silent)
 | |
| 
 | |
| 
 | |
| class DocCleaner:
 | |
|     def __init__(self, attrs: Dict[str, Any], *, silent: bool = True):
 | |
|         self.cfg: Dict[str, Any] = {"attrs": dict(attrs), "silent": silent}
 | |
| 
 | |
|     def __call__(self, doc: Doc) -> Doc:
 | |
|         attrs: dict = self.cfg["attrs"]
 | |
|         silent: bool = self.cfg["silent"]
 | |
|         for attr, value in attrs.items():
 | |
|             obj = doc
 | |
|             parts = attr.split(".")
 | |
|             skip = False
 | |
|             for part in parts[:-1]:
 | |
|                 if hasattr(obj, part):
 | |
|                     obj = getattr(obj, part)
 | |
|                 else:
 | |
|                     skip = True
 | |
|                     if not silent:
 | |
|                         warnings.warn(Warnings.W116.format(attr=attr))
 | |
|             if not skip:
 | |
|                 if hasattr(obj, parts[-1]):
 | |
|                     setattr(obj, parts[-1], value)
 | |
|                 else:
 | |
|                     if not silent:
 | |
|                         warnings.warn(Warnings.W116.format(attr=attr))
 | |
|         return doc
 | |
| 
 | |
|     def to_bytes(self, **kwargs):
 | |
|         serializers = {
 | |
|             "cfg": lambda: srsly.json_dumps(self.cfg),
 | |
|         }
 | |
|         return util.to_bytes(serializers, [])
 | |
| 
 | |
|     def from_bytes(self, data, **kwargs):
 | |
|         deserializers = {
 | |
|             "cfg": lambda b: self.cfg.update(srsly.json_loads(b)),
 | |
|         }
 | |
|         util.from_bytes(data, deserializers, [])
 | |
|         return self
 | |
| 
 | |
|     def to_disk(self, path, **kwargs):
 | |
|         path = util.ensure_path(path)
 | |
|         serializers = {
 | |
|             "cfg": lambda p: srsly.write_json(p, self.cfg),
 | |
|         }
 | |
|         return util.to_disk(path, serializers, [])
 | |
| 
 | |
|     def from_disk(self, path, **kwargs):
 | |
|         path = util.ensure_path(path)
 | |
|         serializers = {
 | |
|             "cfg": lambda p: self.cfg.update(srsly.read_json(p)),
 | |
|         }
 | |
|         util.from_disk(path, serializers, [])
 |