mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-09 08:46:29 +03:00
282 lines
9.2 KiB
Python
282 lines
9.2 KiB
Python
from spacy.cli.evaluate import print_textcats_auc_per_cat, print_prf_per_type
|
|
from spacy.lang.en import English
|
|
from spacy.training import Example
|
|
from spacy.tokens.doc import Doc
|
|
from spacy.vocab import Vocab
|
|
from spacy.kb import KnowledgeBase
|
|
from spacy.pipeline._parser_internals.arc_eager import ArcEager
|
|
from spacy.util import load_config_from_str, load_config
|
|
from spacy.cli.init_config import fill_config
|
|
from thinc.api import Config
|
|
from wasabi import msg
|
|
|
|
from ..util import make_tempdir
|
|
|
|
|
|
def test_issue7019():
|
|
scores = {"LABEL_A": 0.39829102, "LABEL_B": 0.938298329382, "LABEL_C": None}
|
|
print_textcats_auc_per_cat(msg, scores)
|
|
scores = {
|
|
"LABEL_A": {"p": 0.3420302, "r": 0.3929020, "f": 0.49823928932},
|
|
"LABEL_B": {"p": None, "r": None, "f": None},
|
|
}
|
|
print_prf_per_type(msg, scores, name="foo", type="bar")
|
|
|
|
|
|
CONFIG_7029 = """
|
|
[nlp]
|
|
lang = "en"
|
|
pipeline = ["tok2vec", "tagger"]
|
|
|
|
[components]
|
|
|
|
[components.tok2vec]
|
|
factory = "tok2vec"
|
|
|
|
[components.tok2vec.model]
|
|
@architectures = "spacy.Tok2Vec.v1"
|
|
|
|
[components.tok2vec.model.embed]
|
|
@architectures = "spacy.MultiHashEmbed.v1"
|
|
width = ${components.tok2vec.model.encode:width}
|
|
attrs = ["NORM","PREFIX","SUFFIX","SHAPE"]
|
|
rows = [5000,2500,2500,2500]
|
|
include_static_vectors = false
|
|
|
|
[components.tok2vec.model.encode]
|
|
@architectures = "spacy.MaxoutWindowEncoder.v1"
|
|
width = 96
|
|
depth = 4
|
|
window_size = 1
|
|
maxout_pieces = 3
|
|
|
|
[components.tagger]
|
|
factory = "tagger"
|
|
|
|
[components.tagger.model]
|
|
@architectures = "spacy.Tagger.v1"
|
|
nO = null
|
|
|
|
[components.tagger.model.tok2vec]
|
|
@architectures = "spacy.Tok2VecListener.v1"
|
|
width = ${components.tok2vec.model.encode:width}
|
|
upstream = "*"
|
|
"""
|
|
|
|
|
|
def test_issue7029():
|
|
"""Test that an empty document doesn't mess up an entire batch."""
|
|
TRAIN_DATA = [
|
|
("I like green eggs", {"tags": ["N", "V", "J", "N"]}),
|
|
("Eat blue ham", {"tags": ["V", "J", "N"]}),
|
|
]
|
|
nlp = English.from_config(load_config_from_str(CONFIG_7029))
|
|
train_examples = []
|
|
for t in TRAIN_DATA:
|
|
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
|
for i in range(50):
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
texts = ["first", "second", "third", "fourth", "and", "then", "some", ""]
|
|
docs1 = list(nlp.pipe(texts, batch_size=1))
|
|
docs2 = list(nlp.pipe(texts, batch_size=4))
|
|
assert [doc[0].tag_ for doc in docs1[:-1]] == [doc[0].tag_ for doc in docs2[:-1]]
|
|
|
|
|
|
def test_issue7055():
|
|
"""Test that fill-config doesn't turn sourced components into factories."""
|
|
source_cfg = {
|
|
"nlp": {"lang": "en", "pipeline": ["tok2vec", "tagger"]},
|
|
"components": {
|
|
"tok2vec": {"factory": "tok2vec"},
|
|
"tagger": {"factory": "tagger"},
|
|
},
|
|
}
|
|
source_nlp = English.from_config(source_cfg)
|
|
with make_tempdir() as dir_path:
|
|
# We need to create a loadable source pipeline
|
|
source_path = dir_path / "test_model"
|
|
source_nlp.to_disk(source_path)
|
|
base_cfg = {
|
|
"nlp": {"lang": "en", "pipeline": ["tok2vec", "tagger", "ner"]},
|
|
"components": {
|
|
"tok2vec": {"source": str(source_path)},
|
|
"tagger": {"source": str(source_path)},
|
|
"ner": {"factory": "ner"},
|
|
},
|
|
}
|
|
base_cfg = Config(base_cfg)
|
|
base_path = dir_path / "base.cfg"
|
|
base_cfg.to_disk(base_path)
|
|
output_path = dir_path / "config.cfg"
|
|
fill_config(output_path, base_path, silent=True)
|
|
filled_cfg = load_config(output_path)
|
|
assert filled_cfg["components"]["tok2vec"]["source"] == str(source_path)
|
|
assert filled_cfg["components"]["tagger"]["source"] == str(source_path)
|
|
assert filled_cfg["components"]["ner"]["factory"] == "ner"
|
|
assert "model" in filled_cfg["components"]["ner"]
|
|
|
|
|
|
def test_issue7056():
|
|
"""Test that the Unshift transition works properly, and doesn't cause
|
|
sentence segmentation errors."""
|
|
vocab = Vocab()
|
|
ae = ArcEager(
|
|
vocab.strings, ArcEager.get_actions(left_labels=["amod"], right_labels=["pobj"])
|
|
)
|
|
doc = Doc(vocab, words="Severe pain , after trauma".split())
|
|
state = ae.init_batch([doc])[0]
|
|
ae.apply_transition(state, "S")
|
|
ae.apply_transition(state, "L-amod")
|
|
ae.apply_transition(state, "S")
|
|
ae.apply_transition(state, "S")
|
|
ae.apply_transition(state, "S")
|
|
ae.apply_transition(state, "R-pobj")
|
|
ae.apply_transition(state, "D")
|
|
ae.apply_transition(state, "D")
|
|
ae.apply_transition(state, "D")
|
|
assert not state.eol()
|
|
|
|
|
|
def test_partial_links():
|
|
# Test that having some entities on the doc without gold links, doesn't crash
|
|
TRAIN_DATA = [
|
|
(
|
|
"Russ Cochran his reprints include EC Comics.",
|
|
{
|
|
"links": {(0, 12): {"Q2146908": 1.0}},
|
|
"entities": [(0, 12, "PERSON")],
|
|
"sent_starts": [1, -1, 0, 0, 0, 0, 0, 0],
|
|
},
|
|
)
|
|
]
|
|
nlp = English()
|
|
vector_length = 3
|
|
train_examples = []
|
|
for text, annotation in TRAIN_DATA:
|
|
doc = nlp(text)
|
|
train_examples.append(Example.from_dict(doc, annotation))
|
|
|
|
def create_kb(vocab):
|
|
# create artificial KB
|
|
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
|
|
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
|
|
mykb.add_alias("Russ Cochran", ["Q2146908"], [0.9])
|
|
return mykb
|
|
|
|
# Create and train the Entity Linker
|
|
entity_linker = nlp.add_pipe("entity_linker", last=True)
|
|
entity_linker.set_kb(create_kb)
|
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
|
for i in range(2):
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
|
|
# adding additional components that are required for the entity_linker
|
|
nlp.add_pipe("sentencizer", first=True)
|
|
patterns = [
|
|
{"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]},
|
|
{"label": "ORG", "pattern": [{"LOWER": "ec"}, {"LOWER": "comics"}]},
|
|
]
|
|
ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
|
|
ruler.add_patterns(patterns)
|
|
|
|
# this will run the pipeline on the examples and shouldn't crash
|
|
results = nlp.evaluate(train_examples)
|
|
assert "PERSON" in results["ents_per_type"]
|
|
assert "PERSON" in results["nel_f_per_type"]
|
|
assert "ORG" in results["ents_per_type"]
|
|
assert "ORG" not in results["nel_f_per_type"]
|
|
|
|
|
|
def test_issue7065():
|
|
text = "Kathleen Battle sang in Mahler 's Symphony No. 8 at the Cincinnati Symphony Orchestra 's May Festival."
|
|
nlp = English()
|
|
nlp.add_pipe("sentencizer")
|
|
ruler = nlp.add_pipe("entity_ruler")
|
|
patterns = [
|
|
{
|
|
"label": "THING",
|
|
"pattern": [
|
|
{"LOWER": "symphony"},
|
|
{"LOWER": "no"},
|
|
{"LOWER": "."},
|
|
{"LOWER": "8"},
|
|
],
|
|
}
|
|
]
|
|
ruler.add_patterns(patterns)
|
|
|
|
doc = nlp(text)
|
|
sentences = [s for s in doc.sents]
|
|
assert len(sentences) == 2
|
|
sent0 = sentences[0]
|
|
ent = doc.ents[0]
|
|
assert ent.start < sent0.end < ent.end
|
|
assert sentences.index(ent.sent) == 0
|
|
|
|
|
|
def test_issue7065_b():
|
|
# Test that the NEL doesn't crash when an entity crosses a sentence boundary
|
|
nlp = English()
|
|
vector_length = 3
|
|
nlp.add_pipe("sentencizer")
|
|
text = "Mahler 's Symphony No. 8 was beautiful."
|
|
entities = [(0, 6, "PERSON"), (10, 24, "WORK")]
|
|
links = {
|
|
(0, 6): {"Q7304": 1.0, "Q270853": 0.0},
|
|
(10, 24): {"Q7304": 0.0, "Q270853": 1.0},
|
|
}
|
|
sent_starts = [1, -1, 0, 0, 0, 0, 0, 0, 0]
|
|
doc = nlp(text)
|
|
example = Example.from_dict(
|
|
doc, {"entities": entities, "links": links, "sent_starts": sent_starts}
|
|
)
|
|
train_examples = [example]
|
|
|
|
def create_kb(vocab):
|
|
# create artificial KB
|
|
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
|
|
mykb.add_entity(entity="Q270853", freq=12, entity_vector=[9, 1, -7])
|
|
mykb.add_alias(
|
|
alias="No. 8",
|
|
entities=["Q270853"],
|
|
probabilities=[1.0],
|
|
)
|
|
mykb.add_entity(entity="Q7304", freq=12, entity_vector=[6, -4, 3])
|
|
mykb.add_alias(
|
|
alias="Mahler",
|
|
entities=["Q7304"],
|
|
probabilities=[1.0],
|
|
)
|
|
return mykb
|
|
|
|
# Create the Entity Linker component and add it to the pipeline
|
|
entity_linker = nlp.add_pipe("entity_linker", last=True)
|
|
entity_linker.set_kb(create_kb)
|
|
# train the NEL pipe
|
|
optimizer = nlp.initialize(get_examples=lambda: train_examples)
|
|
for i in range(2):
|
|
losses = {}
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
|
|
|
# Add a custom rule-based component to mimick NER
|
|
patterns = [
|
|
{"label": "PERSON", "pattern": [{"LOWER": "mahler"}]},
|
|
{
|
|
"label": "WORK",
|
|
"pattern": [
|
|
{"LOWER": "symphony"},
|
|
{"LOWER": "no"},
|
|
{"LOWER": "."},
|
|
{"LOWER": "8"},
|
|
],
|
|
},
|
|
]
|
|
ruler = nlp.add_pipe("entity_ruler", before="entity_linker")
|
|
ruler.add_patterns(patterns)
|
|
# test the trained model - this should not throw E148
|
|
doc = nlp(text)
|
|
assert doc
|