mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
477 lines
13 KiB
Plaintext
477 lines
13 KiB
Plaintext
//- 💫 DOCS > API > VECTORS
|
||
|
||
include ../_includes/_mixins
|
||
|
||
p
|
||
| Vectors data is kept in the #[code Vectors.data] attribute, which should
|
||
| be an instance of #[code numpy.ndarray] (for CPU vectors) or
|
||
| #[code cupy.ndarray] (for GPU vectors). Multiple keys can be mapped to
|
||
| the same vector, and not all of the rows in the table need to be
|
||
| assigned – so #[code vectors.n_keys] may be greater or smaller than
|
||
| #[code vectors.shape[0]].
|
||
|
||
+h(2, "init") Vectors.__init__
|
||
+tag method
|
||
|
||
p
|
||
| Create a new vector store. You can set the vector values and keys
|
||
| directly on initialisation, or supply a #[code shape] keyword argument
|
||
| to create an empty table you can add vectors to later.
|
||
|
||
+aside-code("Example").
|
||
from spacy.vectors import Vectors
|
||
|
||
empty_vectors = Vectors(shape=(10000, 300))
|
||
|
||
data = numpy.zeros((3, 300), dtype='f')
|
||
keys = [u'cat', u'dog', u'rat']
|
||
vectors = Vectors(data=data, keys=keys)
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code data]
|
||
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
|
||
+cell The vector data.
|
||
|
||
+row
|
||
+cell #[code keys]
|
||
+cell iterable
|
||
+cell A sequence of keys aligned with the data.
|
||
|
||
+row
|
||
+cell #[code shape]
|
||
+cell tuple
|
||
+cell
|
||
| Size of the table as #[code (n_entries, n_columns)], the number
|
||
| of entries and number of columns. Not required if you're
|
||
| initialising the object with #[code data] and #[code keys].
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell #[code Vectors]
|
||
+cell The newly created object.
|
||
|
||
+h(2, "getitem") Vectors.__getitem__
|
||
+tag method
|
||
|
||
p
|
||
| Get a vector by key. If the key is not found in the table, a
|
||
| #[code KeyError] is raised.
|
||
|
||
+aside-code("Example").
|
||
cat_id = nlp.vocab.strings[u'cat']
|
||
cat_vector = nlp.vocab.vectors[cat_id]
|
||
assert cat_vector == nlp.vocab[u'cat'].vector
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code key]
|
||
+cell int
|
||
+cell The key to get the vector for.
|
||
|
||
+row
|
||
+cell returns
|
||
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
|
||
+cell The vector for the key.
|
||
|
||
+h(2, "setitem") Vectors.__setitem__
|
||
+tag method
|
||
|
||
p
|
||
| Set a vector for the given key.
|
||
|
||
+aside-code("Example").
|
||
cat_id = nlp.vocab.strings[u'cat']
|
||
vector = numpy.random.uniform(-1, 1, (300,))
|
||
nlp.vocab.vectors[cat_id] = vector
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code key]
|
||
+cell int
|
||
+cell The key to set the vector for.
|
||
|
||
+row
|
||
+cell #[code vector]
|
||
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
|
||
+cell The vector to set.
|
||
|
||
+h(2, "iter") Vectors.__iter__
|
||
+tag method
|
||
|
||
p Iterate over the keys in the table.
|
||
|
||
+aside-code("Example").
|
||
for key in nlp.vocab.vectors:
|
||
print(key, nlp.vocab.strings[key])
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row("foot")
|
||
+cell yields
|
||
+cell int
|
||
+cell A key in the table.
|
||
|
||
+h(2, "len") Vectors.__len__
|
||
+tag method
|
||
|
||
p Return the number of vectors in the table.
|
||
|
||
+aside-code("Example").
|
||
vectors = Vectors(shape=(3, 300))
|
||
assert len(vectors) == 3
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row("foot")
|
||
+cell returns
|
||
+cell int
|
||
+cell The number of vectors in the table.
|
||
|
||
+h(2, "contains") Vectors.__contains__
|
||
+tag method
|
||
|
||
p
|
||
| Check whether a key has been mapped to a vector entry in the table.
|
||
|
||
+aside-code("Example").
|
||
cat_id = nlp.vocab.strings[u'cat']
|
||
nlp.vectors.add(cat_id, numpy.random.uniform(-1, 1, (300,)))
|
||
assert cat_id in vectors
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code key]
|
||
+cell int
|
||
+cell The key to check.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell bool
|
||
+cell Whether the key has a vector entry.
|
||
|
||
+h(2, "add") Vectors.add
|
||
+tag method
|
||
|
||
p
|
||
| Add a key to the table, optionally setting a vector value as well. Keys
|
||
| can be mapped to an existing vector by setting #[code row], or a new
|
||
| vector can be added. When adding unicode keys, keep in mind that the
|
||
| #[code Vectors] class itself has no
|
||
| #[+api("stringstore") #[code StringStore]], so you have to store the
|
||
| hash-to-string mapping separately. If you need to manage the strings,
|
||
| you should use the #[code Vectors] via the
|
||
| #[+api("vocab") #[code Vocab]] class, e.g. #[code vocab.vectors].
|
||
|
||
+aside-code("Example").
|
||
vector = numpy.random.uniform(-1, 1, (300,))
|
||
cat_id = nlp.vocab.strings[u'cat']
|
||
nlp.vocab.vectors.add(cat_id, vector=vector)
|
||
nlp.vocab.vectors.add(u'dog', row=0)
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code key]
|
||
+cell unicode / int
|
||
+cell The key to add.
|
||
|
||
+row
|
||
+cell #[code vector]
|
||
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
|
||
+cell An optional vector to add for the key.
|
||
|
||
+row
|
||
+cell #[code row]
|
||
+cell int
|
||
+cell An optional row number of a vector to map the key to.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell int
|
||
+cell The row the vector was added to.
|
||
|
||
+h(2, "resize") Vectors.resize
|
||
+tag method
|
||
|
||
p
|
||
| Resize the underlying vectors array. If #[code inplace=True], the memory
|
||
| is reallocated. This may cause other references to the data to become
|
||
| invalid, so only use #[code inplace=True] if you're sure that's what you
|
||
| want. If the number of vectors is reduced, keys mapped to rows that have
|
||
| been deleted are removed. These removed items are returned as a list of
|
||
| #[code (key, row)] tuples.
|
||
|
||
+aside-code("Example").
|
||
removed = nlp.vocab.vectors.resize((10000, 300))
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code shape]
|
||
+cell tuple
|
||
+cell
|
||
| A #[code (rows, dims)] tuple describing the number of rows and
|
||
| dimensions.
|
||
|
||
+row
|
||
+cell #[code inplace]
|
||
+cell bool
|
||
+cell Reallocate the memory.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell list
|
||
+cell The removed items as a list of #[code (key, row)] tuples.
|
||
|
||
+h(2, "keys") Vectors.keys
|
||
+tag method
|
||
|
||
p A sequence of the keys in the table.
|
||
|
||
+aside-code("Example").
|
||
for key in nlp.vocab.vectors.keys():
|
||
print(key, nlp.vocab.strings[key])
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row("foot")
|
||
+cell returns
|
||
+cell iterable
|
||
+cell The keys.
|
||
|
||
+h(2, "values") Vectors.values
|
||
+tag method
|
||
|
||
p
|
||
| Iterate over vectors that have been assigned to at least one key. Note
|
||
| that some vectors may be unassigned, so the number of vectors returned
|
||
| may be less than the length of the vectors table.
|
||
|
||
+aside-code("Example").
|
||
for vector in nlp.vocab.vectors.values():
|
||
print(vector)
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row("foot")
|
||
+cell yields
|
||
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
|
||
+cell A vector in the table.
|
||
|
||
+h(2, "items") Vectors.items
|
||
+tag method
|
||
|
||
p Iterate over #[code (key, vector)] pairs, in order.
|
||
|
||
+aside-code("Example").
|
||
for key, vector in nlp.vocab.vectors.items():
|
||
print(key, nlp.vocab.strings[key], vector)
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row("foot")
|
||
+cell yields
|
||
+cell tuple
|
||
+cell #[code (key, vector)] pairs, in order.
|
||
|
||
+h(2, "shape") Vectors.shape
|
||
+tag property
|
||
|
||
p
|
||
| Get #[code (rows, dims)] tuples of number of rows and number of
|
||
| dimensions in the vector table.
|
||
|
||
+aside-code("Example").
|
||
vectors = Vectors(shape(1, 300))
|
||
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
|
||
rows, dims = vectors.shape
|
||
assert rows == 1
|
||
assert dims == 300
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row("foot")
|
||
+cell returns
|
||
+cell tuple
|
||
+cell A #[code (rows, dims)] pair.
|
||
|
||
+h(2, "size") Vectors.size
|
||
+tag property
|
||
|
||
p The vector size, i.e. #[code rows * dims].
|
||
|
||
+aside-code("Example").
|
||
vectors = Vectors(shape=(500, 300))
|
||
assert vectors.size == 150000
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row("foot")
|
||
+cell returns
|
||
+cell int
|
||
+cell The vector size.
|
||
|
||
+h(2, "is_full") Vectors.is_full
|
||
+tag property
|
||
|
||
p
|
||
| Whether the vectors table is full and has no slots are available for new
|
||
| keys. If a table is full, it can be resized using
|
||
| #[+api("vectors#resize") #[code Vectors.resize]].
|
||
|
||
+aside-code("Example").
|
||
vectors = Vectors(shape=(1, 300))
|
||
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
|
||
assert vectors.is_full
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row("foot")
|
||
+cell returns
|
||
+cell bool
|
||
+cell Whether the vectors table is full.
|
||
|
||
+h(2, "n_keys") Vectors.n_keys
|
||
+tag property
|
||
|
||
p
|
||
| Get the number of keys in the table. Note that this is the number of
|
||
| #[em all] keys, not just unique vectors. If several keys are mapped
|
||
| are mapped to the same vectors, they will be counted individually.
|
||
|
||
+aside-code("Example").
|
||
vectors = Vectors(shape=(10, 300))
|
||
assert len(vectors) == 10
|
||
assert vectors.n_keys == 0
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row("foot")
|
||
+cell returns
|
||
+cell int
|
||
+cell The number of all keys in the table.
|
||
|
||
+h(2, "from_glove") Vectors.from_glove
|
||
+tag method
|
||
|
||
p
|
||
| Load #[+a("https://nlp.stanford.edu/projects/glove/") GloVe] vectors from
|
||
| a directory. Assumes binary format, that the vocab is in a
|
||
| #[code vocab.txt], and that vectors are named
|
||
| #[code vectors.{size}.[fd].bin], e.g. #[code vectors.128.f.bin] for 128d
|
||
| float32 vectors, #[code vectors.300.d.bin] for 300d float64 (double)
|
||
| vectors, etc. By default GloVe outputs 64-bit vectors.
|
||
|
||
+aside-code("Example").
|
||
vectors = Vectors()
|
||
vectors.from_glove('/path/to/glove_vectors')
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code path]
|
||
+cell unicode / #[code Path]
|
||
+cell The path to load the GloVe vectors from.
|
||
|
||
+h(2, "to_disk") Vectors.to_disk
|
||
+tag method
|
||
|
||
p Save the current state to a directory.
|
||
|
||
+aside-code("Example").
|
||
vectors.to_disk('/path/to/vectors')
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code path]
|
||
+cell unicode / #[code Path]
|
||
+cell
|
||
| A path to a directory, which will be created if it doesn't exist.
|
||
| Paths may be either strings or #[code Path]-like objects.
|
||
|
||
+row
|
||
+cell #[code **exclude]
|
||
+cell -
|
||
+cell Named attributes to prevent from being saved.
|
||
|
||
+h(2, "from_disk") Vectors.from_disk
|
||
+tag method
|
||
|
||
p Loads state from a directory. Modifies the object in place and returns it.
|
||
|
||
+aside-code("Example").
|
||
vectors = Vectors(StringStore())
|
||
vectors.from_disk('/path/to/vectors')
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code path]
|
||
+cell unicode / #[code Path]
|
||
+cell
|
||
| A path to a directory. Paths may be either strings or
|
||
| #[code Path]-like objects.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell #[code Vectors]
|
||
+cell The modified #[code Vectors] object.
|
||
|
||
+h(2, "to_bytes") Vectors.to_bytes
|
||
+tag method
|
||
|
||
p Serialize the current state to a binary string.
|
||
|
||
+aside-code("Example").
|
||
vectors_bytes = vectors.to_bytes()
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code **exclude]
|
||
+cell -
|
||
+cell Named attributes to prevent from being serialized.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell bytes
|
||
+cell The serialized form of the #[code Vectors] object.
|
||
|
||
+h(2, "from_bytes") Vectors.from_bytes
|
||
+tag method
|
||
|
||
p Load state from a binary string.
|
||
|
||
+aside-code("Example").
|
||
fron spacy.vectors import Vectors
|
||
vectors_bytes = vectors.to_bytes()
|
||
new_vectors = Vectors(StringStore())
|
||
new_vectors.from_bytes(vectors_bytes)
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code data]
|
||
+cell bytes
|
||
+cell The data to load from.
|
||
|
||
+row
|
||
+cell #[code **exclude]
|
||
+cell -
|
||
+cell Named attributes to prevent from being loaded.
|
||
|
||
+row("foot")
|
||
+cell returns
|
||
+cell #[code Vectors]
|
||
+cell The #[code Vectors] object.
|
||
|
||
+h(2, "attributes") Attributes
|
||
|
||
+table(["Name", "Type", "Description"])
|
||
+row
|
||
+cell #[code data]
|
||
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
|
||
+cell
|
||
| Stored vectors data. #[code numpy] is used for CPU vectors,
|
||
| #[code cupy] for GPU vectors.
|
||
|
||
+row
|
||
+cell #[code key2row]
|
||
+cell dict
|
||
+cell
|
||
| Dictionary mapping word hashes to rows in the
|
||
| #[code Vectors.data] table.
|
||
|
||
+row
|
||
+cell #[code keys]
|
||
+cell #[code.u-break ndarray[ndim=1, dtype='float32']]
|
||
+cell
|
||
| Array keeping the keys in order, such that
|
||
| #[code keys[vectors.key2row[key]] == key]
|