mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-04 06:16:33 +03:00
903 lines
34 KiB
Cython
903 lines
34 KiB
Cython
# coding: utf8
|
||
from __future__ import unicode_literals
|
||
|
||
cimport cython
|
||
cimport numpy as np
|
||
import numpy
|
||
import numpy.linalg
|
||
import struct
|
||
|
||
from libc.string cimport memcpy, memset
|
||
from libc.stdint cimport uint32_t
|
||
from libc.math cimport sqrt
|
||
|
||
from .span cimport Span
|
||
from .token cimport Token
|
||
from ..lexeme cimport Lexeme
|
||
from ..lexeme cimport EMPTY_LEXEME
|
||
from ..typedefs cimport attr_t, flags_t
|
||
from ..attrs import IDS
|
||
from ..attrs cimport attr_id_t
|
||
from ..attrs cimport ID, ORTH, NORM, LOWER, SHAPE, PREFIX, SUFFIX, LENGTH, CLUSTER
|
||
from ..attrs cimport POS, LEMMA, TAG, DEP, HEAD, SPACY, ENT_IOB, ENT_TYPE
|
||
from ..parts_of_speech cimport CCONJ, PUNCT, NOUN
|
||
from ..parts_of_speech cimport univ_pos_t
|
||
from ..lexeme cimport Lexeme
|
||
from .span cimport Span
|
||
from .token cimport Token
|
||
from .printers import parse_tree
|
||
from ..serialize.bits cimport BitArray
|
||
from ..util import normalize_slice
|
||
from ..syntax.iterators import CHUNKERS
|
||
from ..compat import is_config
|
||
from .. import about
|
||
|
||
|
||
DEF PADDING = 5
|
||
|
||
|
||
cdef int bounds_check(int i, int length, int padding) except -1:
|
||
if (i + padding) < 0:
|
||
raise IndexError
|
||
if (i - padding) >= length:
|
||
raise IndexError
|
||
|
||
|
||
cdef attr_t get_token_attr(const TokenC* token, attr_id_t feat_name) nogil:
|
||
if feat_name == LEMMA:
|
||
return token.lemma
|
||
elif feat_name == POS:
|
||
return token.pos
|
||
elif feat_name == TAG:
|
||
return token.tag
|
||
elif feat_name == DEP:
|
||
return token.dep
|
||
elif feat_name == HEAD:
|
||
return token.head
|
||
elif feat_name == SPACY:
|
||
return token.spacy
|
||
elif feat_name == ENT_IOB:
|
||
return token.ent_iob
|
||
elif feat_name == ENT_TYPE:
|
||
return token.ent_type
|
||
else:
|
||
return Lexeme.get_struct_attr(token.lex, feat_name)
|
||
|
||
|
||
cdef class Doc:
|
||
"""
|
||
A sequence of `Token` objects. Access sentences and named entities,
|
||
export annotations to numpy arrays, losslessly serialize to compressed
|
||
binary strings.
|
||
|
||
Aside: Internals
|
||
The `Doc` object holds an array of `TokenC` structs.
|
||
The Python-level `Token` and `Span` objects are views of this
|
||
array, i.e. they don't own the data themselves.
|
||
|
||
Code: Construction 1
|
||
doc = nlp.tokenizer(u'Some text')
|
||
|
||
Code: Construction 2
|
||
doc = Doc(nlp.vocab, orths_and_spaces=[(u'Some', True), (u'text', True)])
|
||
|
||
"""
|
||
def __init__(self, Vocab vocab, words=None, spaces=None, orths_and_spaces=None):
|
||
"""
|
||
Create a Doc object.
|
||
|
||
Aside: Implementation
|
||
This method of constructing a `Doc` object is usually only used
|
||
for deserialization. Standard usage is to construct the document via
|
||
a call to the language object.
|
||
|
||
Arguments:
|
||
vocab:
|
||
A Vocabulary object, which must match any models you want to
|
||
use (e.g. tokenizer, parser, entity recognizer).
|
||
|
||
words:
|
||
A list of unicode strings to add to the document as words. If None,
|
||
defaults to empty list.
|
||
|
||
spaces:
|
||
A list of boolean values, of the same length as words. True
|
||
means that the word is followed by a space, False means it is not.
|
||
If None, defaults to [True]*len(words)
|
||
"""
|
||
self.vocab = vocab
|
||
size = 20
|
||
self.mem = Pool()
|
||
# Guarantee self.lex[i-x], for any i >= 0 and x < padding is in bounds
|
||
# However, we need to remember the true starting places, so that we can
|
||
# realloc.
|
||
data_start = <TokenC*>self.mem.alloc(size + (PADDING*2), sizeof(TokenC))
|
||
cdef int i
|
||
for i in range(size + (PADDING*2)):
|
||
data_start[i].lex = &EMPTY_LEXEME
|
||
data_start[i].l_edge = i
|
||
data_start[i].r_edge = i
|
||
self.c = data_start + PADDING
|
||
self.max_length = size
|
||
self.length = 0
|
||
self.is_tagged = False
|
||
self.is_parsed = False
|
||
self.sentiment = 0.0
|
||
self.user_hooks = {}
|
||
self.user_token_hooks = {}
|
||
self.user_span_hooks = {}
|
||
self.tensor = numpy.zeros((0,), dtype='float32')
|
||
self.user_data = {}
|
||
self._py_tokens = []
|
||
self._vector = None
|
||
self.noun_chunks_iterator = CHUNKERS.get(self.vocab.lang)
|
||
cdef unicode orth
|
||
cdef bint has_space
|
||
if orths_and_spaces is None and words is not None:
|
||
if spaces is None:
|
||
spaces = [True] * len(words)
|
||
elif len(spaces) != len(words):
|
||
raise ValueError(
|
||
"Arguments 'words' and 'spaces' should be sequences of the "
|
||
"same length, or 'spaces' should be left default at None. "
|
||
"spaces should be a sequence of booleans, with True meaning "
|
||
"that the word owns a ' ' character following it.")
|
||
orths_and_spaces = zip(words, spaces)
|
||
if orths_and_spaces is not None:
|
||
for orth_space in orths_and_spaces:
|
||
if isinstance(orth_space, unicode):
|
||
orth = orth_space
|
||
has_space = True
|
||
elif isinstance(orth_space, bytes):
|
||
raise ValueError(
|
||
"orths_and_spaces expects either List(unicode) or "
|
||
"List((unicode, bool)). Got bytes instance: %s" % (str(orth_space)))
|
||
else:
|
||
orth, has_space = orth_space
|
||
# Note that we pass self.mem here --- we have ownership, if LexemeC
|
||
# must be created.
|
||
self.push_back(
|
||
<const LexemeC*>self.vocab.get(self.mem, orth), has_space)
|
||
# Tough to decide on policy for this. Is an empty doc tagged and parsed?
|
||
# There's no information we'd like to add to it, so I guess so?
|
||
if self.length == 0:
|
||
self.is_tagged = True
|
||
self.is_parsed = True
|
||
|
||
def __getitem__(self, object i):
|
||
"""
|
||
doc[i]
|
||
Get the Token object at position i, where i is an integer.
|
||
Negative indexing is supported, and follows the usual Python
|
||
semantics, i.e. doc[-2] is doc[len(doc) - 2].
|
||
doc[start : end]]
|
||
Get a `Span` object, starting at position `start`
|
||
and ending at position `end`, where `start` and
|
||
`end` are token indices. For instance,
|
||
`doc[2:5]` produces a span consisting of
|
||
tokens 2, 3 and 4. Stepped slices (e.g. `doc[start : end : step]`)
|
||
are not supported, as `Span` objects must be contiguous (cannot have gaps).
|
||
You can use negative indices and open-ended ranges, which have their
|
||
normal Python semantics.
|
||
"""
|
||
if isinstance(i, slice):
|
||
start, stop = normalize_slice(len(self), i.start, i.stop, i.step)
|
||
return Span(self, start, stop, label=0)
|
||
|
||
if i < 0:
|
||
i = self.length + i
|
||
bounds_check(i, self.length, PADDING)
|
||
if self._py_tokens[i] is not None:
|
||
return self._py_tokens[i]
|
||
else:
|
||
return Token.cinit(self.vocab, &self.c[i], i, self)
|
||
|
||
def __iter__(self):
|
||
"""
|
||
for token in doc
|
||
Iterate over `Token` objects, from which the annotations can
|
||
be easily accessed. This is the main way of accessing Token
|
||
objects, which are the main way annotations are accessed from
|
||
Python. If faster-than-Python speeds are required, you can
|
||
instead access the annotations as a numpy array, or access the
|
||
underlying C data directly from Cython.
|
||
"""
|
||
cdef int i
|
||
for i in range(self.length):
|
||
if self._py_tokens[i] is not None:
|
||
yield self._py_tokens[i]
|
||
else:
|
||
yield Token.cinit(self.vocab, &self.c[i], i, self)
|
||
|
||
def __len__(self):
|
||
"""
|
||
len(doc)
|
||
The number of tokens in the document.
|
||
"""
|
||
return self.length
|
||
|
||
def __unicode__(self):
|
||
return u''.join([t.text_with_ws for t in self])
|
||
|
||
def __bytes__(self):
|
||
return u''.join([t.text_with_ws for t in self]).encode('utf-8')
|
||
|
||
def __str__(self):
|
||
if is_config(python3=True):
|
||
return self.__unicode__()
|
||
return self.__bytes__()
|
||
|
||
def __repr__(self):
|
||
return self.__str__()
|
||
|
||
@property
|
||
def doc(self):
|
||
return self
|
||
|
||
def similarity(self, other):
|
||
"""
|
||
Make a semantic similarity estimate. The default estimate is cosine
|
||
similarity using an average of word vectors.
|
||
|
||
Arguments:
|
||
other (object): The object to compare with. By default, accepts Doc,
|
||
Span, Token and Lexeme objects.
|
||
|
||
Return:
|
||
score (float): A scalar similarity score. Higher is more similar.
|
||
"""
|
||
if 'similarity' in self.user_hooks:
|
||
return self.user_hooks['similarity'](self, other)
|
||
if self.vector_norm == 0 or other.vector_norm == 0:
|
||
return 0.0
|
||
return numpy.dot(self.vector, other.vector) / (self.vector_norm * other.vector_norm)
|
||
|
||
property has_vector:
|
||
"""
|
||
A boolean value indicating whether a word vector is associated with the object.
|
||
"""
|
||
def __get__(self):
|
||
if 'has_vector' in self.user_hooks:
|
||
return self.user_hooks['has_vector'](self)
|
||
|
||
return any(token.has_vector for token in self)
|
||
|
||
property vector:
|
||
"""
|
||
A real-valued meaning representation. Defaults to an average of the token vectors.
|
||
|
||
Type: numpy.ndarray[ndim=1, dtype='float32']
|
||
"""
|
||
def __get__(self):
|
||
if 'vector' in self.user_hooks:
|
||
return self.user_hooks['vector'](self)
|
||
if self._vector is None:
|
||
if len(self):
|
||
self._vector = sum(t.vector for t in self) / len(self)
|
||
else:
|
||
return numpy.zeros((self.vocab.vectors_length,), dtype='float32')
|
||
return self._vector
|
||
|
||
def __set__(self, value):
|
||
self._vector = value
|
||
|
||
property vector_norm:
|
||
def __get__(self):
|
||
if 'vector_norm' in self.user_hooks:
|
||
return self.user_hooks['vector_norm'](self)
|
||
cdef float value
|
||
cdef double norm = 0
|
||
if self._vector_norm is None:
|
||
norm = 0.0
|
||
for value in self.vector:
|
||
norm += value * value
|
||
self._vector_norm = sqrt(norm) if norm != 0 else 0
|
||
return self._vector_norm
|
||
|
||
def __set__(self, value):
|
||
self._vector_norm = value
|
||
|
||
@property
|
||
def string(self):
|
||
return self.text
|
||
|
||
property text:
|
||
"""
|
||
A unicode representation of the document text.
|
||
"""
|
||
def __get__(self):
|
||
return u''.join(t.text_with_ws for t in self)
|
||
|
||
property text_with_ws:
|
||
"""
|
||
An alias of Doc.text, provided for duck-type compatibility with Span and Token.
|
||
"""
|
||
def __get__(self):
|
||
return self.text
|
||
|
||
property ents:
|
||
"""
|
||
Yields named-entity `Span` objects, if the entity recognizer
|
||
has been applied to the document. Iterate over the span to get
|
||
individual Token objects, or access the label:
|
||
|
||
Example:
|
||
from spacy.en import English
|
||
nlp = English()
|
||
tokens = nlp(u'Mr. Best flew to New York on Saturday morning.')
|
||
ents = list(tokens.ents)
|
||
assert ents[0].label == 346
|
||
assert ents[0].label_ == 'PERSON'
|
||
assert ents[0].orth_ == 'Best'
|
||
assert ents[0].text == 'Mr. Best'
|
||
"""
|
||
def __get__(self):
|
||
cdef int i
|
||
cdef const TokenC* token
|
||
cdef int start = -1
|
||
cdef int label = 0
|
||
output = []
|
||
for i in range(self.length):
|
||
token = &self.c[i]
|
||
if token.ent_iob == 1:
|
||
assert start != -1
|
||
elif token.ent_iob == 2 or token.ent_iob == 0:
|
||
if start != -1:
|
||
output.append(Span(self, start, i, label=label))
|
||
start = -1
|
||
label = 0
|
||
elif token.ent_iob == 3:
|
||
if start != -1:
|
||
output.append(Span(self, start, i, label=label))
|
||
start = i
|
||
label = token.ent_type
|
||
if start != -1:
|
||
output.append(Span(self, start, self.length, label=label))
|
||
return tuple(output)
|
||
|
||
def __set__(self, ents):
|
||
# TODO:
|
||
# 1. Allow negative matches
|
||
# 2. Ensure pre-set NERs are not over-written during statistical prediction
|
||
# 3. Test basic data-driven ORTH gazetteer
|
||
# 4. Test more nuanced date and currency regex
|
||
cdef int i
|
||
for i in range(self.length):
|
||
self.c[i].ent_type = 0
|
||
# At this point we don't know whether the NER has run over the
|
||
# Doc. If the ent_iob is missing, leave it missing.
|
||
if self.c[i].ent_iob != 0:
|
||
self.c[i].ent_iob = 2 # Means O. Non-O are set from ents.
|
||
cdef attr_t ent_type
|
||
cdef int start, end
|
||
for ent_info in ents:
|
||
if isinstance(ent_info, Span):
|
||
ent_id = ent_info.ent_id
|
||
ent_type = ent_info.label
|
||
start = ent_info.start
|
||
end = ent_info.end
|
||
elif len(ent_info) == 3:
|
||
ent_type, start, end = ent_info
|
||
else:
|
||
ent_id, ent_type, start, end = ent_info
|
||
if ent_type is None or ent_type < 0:
|
||
# Mark as O
|
||
for i in range(start, end):
|
||
self.c[i].ent_type = 0
|
||
self.c[i].ent_iob = 2
|
||
else:
|
||
# Mark (inside) as I
|
||
for i in range(start, end):
|
||
self.c[i].ent_type = ent_type
|
||
self.c[i].ent_iob = 1
|
||
# Set start as B
|
||
self.c[start].ent_iob = 3
|
||
|
||
property noun_chunks:
|
||
"""
|
||
Yields base noun-phrase #[code Span] objects, if the document
|
||
has been syntactically parsed. A base noun phrase, or
|
||
'NP chunk', is a noun phrase that does not permit other NPs to
|
||
be nested within it – so no NP-level coordination, no prepositional
|
||
phrases, and no relative clauses.
|
||
"""
|
||
def __get__(self):
|
||
if not self.is_parsed:
|
||
raise ValueError(
|
||
"noun_chunks requires the dependency parse, which "
|
||
"requires data to be installed. For more info, see the "
|
||
"documentation: \n%s\n" % about.__docs_models__)
|
||
# Accumulate the result before beginning to iterate over it. This prevents
|
||
# the tokenisation from being changed out from under us during the iteration.
|
||
# The tricky thing here is that Span accepts its tokenisation changing,
|
||
# so it's okay once we have the Span objects. See Issue #375
|
||
spans = []
|
||
for start, end, label in self.noun_chunks_iterator(self):
|
||
spans.append(Span(self, start, end, label=label))
|
||
for span in spans:
|
||
yield span
|
||
|
||
property sents:
|
||
"""
|
||
Yields sentence `Span` objects. Sentence spans have no label.
|
||
To improve accuracy on informal texts, spaCy calculates sentence
|
||
boundaries from the syntactic dependency parse. If the parser is disabled,
|
||
`sents` iterator will be unavailable.
|
||
|
||
Example:
|
||
from spacy.en import English
|
||
nlp = English()
|
||
doc = nlp("This is a sentence. Here's another...")
|
||
assert [s.root.orth_ for s in doc.sents] == ["is", "'s"]
|
||
"""
|
||
def __get__(self):
|
||
if 'sents' in self.user_hooks:
|
||
yield from self.user_hooks['sents'](self)
|
||
return
|
||
|
||
if not self.is_parsed:
|
||
raise ValueError(
|
||
"Sentence boundary detection requires the dependency parse, which "
|
||
"requires data to be installed. For more info, see the "
|
||
"documentation: \n%s\n" % about.__docs_models__)
|
||
cdef int i
|
||
start = 0
|
||
for i in range(1, self.length):
|
||
if self.c[i].sent_start:
|
||
yield Span(self, start, i)
|
||
start = i
|
||
if start != self.length:
|
||
yield Span(self, start, self.length)
|
||
|
||
cdef int push_back(self, LexemeOrToken lex_or_tok, bint has_space) except -1:
|
||
if self.length == 0:
|
||
# Flip these to false when we see the first token.
|
||
self.is_tagged = False
|
||
self.is_parsed = False
|
||
if self.length == self.max_length:
|
||
self._realloc(self.length * 2)
|
||
cdef TokenC* t = &self.c[self.length]
|
||
if LexemeOrToken is const_TokenC_ptr:
|
||
t[0] = lex_or_tok[0]
|
||
else:
|
||
t.lex = lex_or_tok
|
||
if self.length == 0:
|
||
t.idx = 0
|
||
else:
|
||
t.idx = (t-1).idx + (t-1).lex.length + (t-1).spacy
|
||
t.l_edge = self.length
|
||
t.r_edge = self.length
|
||
assert t.lex.orth != 0
|
||
t.spacy = has_space
|
||
self.length += 1
|
||
self._py_tokens.append(None)
|
||
return t.idx + t.lex.length + t.spacy
|
||
|
||
@cython.boundscheck(False)
|
||
cpdef np.ndarray to_array(self, object py_attr_ids):
|
||
"""Export given token attributes to a numpy `ndarray`.
|
||
|
||
If `attr_ids` is a sequence of M attributes, the output array will
|
||
be of shape `(N, M)`, where N is the length of the `Doc`
|
||
(in tokens). If `attr_ids` is a single attribute, the output shape will
|
||
be (N,). You can specify attributes by integer ID (e.g. spacy.attrs.LEMMA)
|
||
or string name (e.g. 'LEMMA' or 'lemma').
|
||
|
||
Example:
|
||
from spacy import attrs
|
||
doc = nlp(text)
|
||
# All strings mapped to integers, for easy export to numpy
|
||
np_array = doc.to_array([attrs.LOWER, attrs.POS, attrs.ENT_TYPE, attrs.IS_ALPHA])
|
||
|
||
Arguments:
|
||
attr_ids (list[]): A list of attributes (int IDs or string names).
|
||
|
||
Returns:
|
||
feat_array (numpy.ndarray[long, ndim=2]):
|
||
A feature matrix, with one row per word, and one column per attribute
|
||
indicated in the input `attr_ids`.
|
||
"""
|
||
cdef int i, j
|
||
cdef attr_id_t feature
|
||
cdef np.ndarray[attr_t, ndim=2] output
|
||
cdef np.ndarray[attr_t, ndim=1] output_1D
|
||
# Handle scalar/list inputs of strings/ints for py_attr_ids
|
||
if( type(py_attr_ids) is not list and type(py_attr_ids) is not tuple ):
|
||
py_attr_ids = [ py_attr_ids ]
|
||
py_attr_ids_input = []
|
||
for py_attr_id in py_attr_ids:
|
||
if( type(py_attr_id) is int ):
|
||
py_attr_ids_input.append(py_attr_id)
|
||
else:
|
||
py_attr_ids_input.append(IDS[py_attr_id.upper()])
|
||
# Make an array from the attributes --- otherwise our inner loop is Python
|
||
# dict iteration.
|
||
cdef np.ndarray[attr_t, ndim=1] attr_ids = numpy.asarray(py_attr_ids_input, dtype=numpy.int32)
|
||
output = numpy.ndarray(shape=(self.length, len(attr_ids)), dtype=numpy.int32)
|
||
for i in range(self.length):
|
||
for j, feature in enumerate(attr_ids):
|
||
output[i, j] = get_token_attr(&self.c[i], feature)
|
||
if( len(attr_ids) == 1 ):
|
||
output_1D = output.reshape((self.length))
|
||
return output_1D
|
||
return output
|
||
|
||
def count_by(self, attr_id_t attr_id, exclude=None, PreshCounter counts=None):
|
||
"""
|
||
Produce a dict of {attribute (int): count (ints)} frequencies, keyed
|
||
by the values of the given attribute ID.
|
||
|
||
Example:
|
||
from spacy.en import English
|
||
from spacy import attrs
|
||
nlp = English()
|
||
tokens = nlp(u'apple apple orange banana')
|
||
tokens.count_by(attrs.ORTH)
|
||
# {12800L: 1, 11880L: 2, 7561L: 1}
|
||
tokens.to_array([attrs.ORTH])
|
||
# array([[11880],
|
||
# [11880],
|
||
# [ 7561],
|
||
# [12800]])
|
||
|
||
Arguments:
|
||
attr_id
|
||
int
|
||
The attribute ID to key the counts.
|
||
"""
|
||
cdef int i
|
||
cdef attr_t attr
|
||
cdef size_t count
|
||
|
||
if counts is None:
|
||
counts = PreshCounter()
|
||
output_dict = True
|
||
else:
|
||
output_dict = False
|
||
# Take this check out of the loop, for a bit of extra speed
|
||
if exclude is None:
|
||
for i in range(self.length):
|
||
counts.inc(get_token_attr(&self.c[i], attr_id), 1)
|
||
else:
|
||
for i in range(self.length):
|
||
if not exclude(self[i]):
|
||
attr = get_token_attr(&self.c[i], attr_id)
|
||
counts.inc(attr, 1)
|
||
if output_dict:
|
||
return dict(counts)
|
||
|
||
def _realloc(self, new_size):
|
||
self.max_length = new_size
|
||
n = new_size + (PADDING * 2)
|
||
# What we're storing is a "padded" array. We've jumped forward PADDING
|
||
# places, and are storing the pointer to that. This way, we can access
|
||
# words out-of-bounds, and get out-of-bounds markers.
|
||
# Now that we want to realloc, we need the address of the true start,
|
||
# so we jump the pointer back PADDING places.
|
||
cdef TokenC* data_start = self.c - PADDING
|
||
data_start = <TokenC*>self.mem.realloc(data_start, n * sizeof(TokenC))
|
||
self.c = data_start + PADDING
|
||
cdef int i
|
||
for i in range(self.length, self.max_length + PADDING):
|
||
self.c[i].lex = &EMPTY_LEXEME
|
||
|
||
cdef void set_parse(self, const TokenC* parsed) nogil:
|
||
# TODO: This method is fairly misleading atm. It's used by Parser
|
||
# to actually apply the parse calculated. Need to rethink this.
|
||
|
||
# Probably we should use from_array?
|
||
self.is_parsed = True
|
||
for i in range(self.length):
|
||
self.c[i] = parsed[i]
|
||
|
||
def from_array(self, attrs, array):
|
||
"""
|
||
Write to a `Doc` object, from an `(M, N)` array of attributes.
|
||
"""
|
||
cdef int i, col
|
||
cdef attr_id_t attr_id
|
||
cdef TokenC* tokens = self.c
|
||
cdef int length = len(array)
|
||
cdef attr_t[:] values
|
||
for col, attr_id in enumerate(attrs):
|
||
values = array[:, col]
|
||
if attr_id == HEAD:
|
||
for i in range(length):
|
||
tokens[i].head = values[i]
|
||
if values[i] >= 1:
|
||
tokens[i + values[i]].l_kids += 1
|
||
elif values[i] < 0:
|
||
tokens[i + values[i]].r_kids += 1
|
||
elif attr_id == TAG:
|
||
for i in range(length):
|
||
if values[i] != 0:
|
||
self.vocab.morphology.assign_tag(&tokens[i], values[i])
|
||
elif attr_id == POS:
|
||
for i in range(length):
|
||
tokens[i].pos = <univ_pos_t>values[i]
|
||
elif attr_id == DEP:
|
||
for i in range(length):
|
||
tokens[i].dep = values[i]
|
||
elif attr_id == ENT_IOB:
|
||
for i in range(length):
|
||
tokens[i].ent_iob = values[i]
|
||
elif attr_id == ENT_TYPE:
|
||
for i in range(length):
|
||
tokens[i].ent_type = values[i]
|
||
else:
|
||
raise ValueError("Unknown attribute ID: %d" % attr_id)
|
||
set_children_from_heads(self.c, self.length)
|
||
self.is_parsed = bool(HEAD in attrs or DEP in attrs)
|
||
self.is_tagged = bool(TAG in attrs or POS in attrs)
|
||
return self
|
||
|
||
|
||
def get_lca_matrix(self):
|
||
'''
|
||
Calculates the lowest common ancestor matrix
|
||
for a given Spacy doc.
|
||
Returns LCA matrix containing the integer index
|
||
of the ancestor, or -1 if no common ancestor is
|
||
found (ex if span excludes a necessary ancestor).
|
||
Apologies about the recursion, but the
|
||
impact on performance is negligible given
|
||
the natural limitations on the depth of a typical human sentence.
|
||
'''
|
||
# Efficiency notes:
|
||
#
|
||
# We can easily improve the performance here by iterating in Cython.
|
||
# To loop over the tokens in Cython, the easiest way is:
|
||
# for token in doc.c[:doc.c.length]:
|
||
# head = token + token.head
|
||
# Both token and head will be TokenC* here. The token.head attribute
|
||
# is an integer offset.
|
||
def __pairwise_lca(token_j, token_k, lca_matrix):
|
||
if lca_matrix[token_j.i][token_k.i] != -2:
|
||
return lca_matrix[token_j.i][token_k.i]
|
||
elif token_j == token_k:
|
||
lca_index = token_j.i
|
||
elif token_k.head == token_j:
|
||
lca_index = token_j.i
|
||
elif token_j.head == token_k:
|
||
lca_index = token_k.i
|
||
elif (token_j.head == token_j) and (token_k.head == token_k):
|
||
lca_index = -1
|
||
else:
|
||
lca_index = __pairwise_lca(token_j.head, token_k.head, lca_matrix)
|
||
lca_matrix[token_j.i][token_k.i] = lca_index
|
||
lca_matrix[token_k.i][token_j.i] = lca_index
|
||
|
||
return lca_index
|
||
|
||
lca_matrix = numpy.empty((len(self), len(self)), dtype=numpy.int32)
|
||
lca_matrix.fill(-2)
|
||
for j in range(len(self)):
|
||
token_j = self[j]
|
||
for k in range(j, len(self)):
|
||
token_k = self[k]
|
||
lca_matrix[j][k] = __pairwise_lca(token_j, token_k, lca_matrix)
|
||
lca_matrix[k][j] = lca_matrix[j][k]
|
||
|
||
return lca_matrix
|
||
|
||
|
||
def to_bytes(self):
|
||
"""
|
||
Serialize, producing a byte string.
|
||
"""
|
||
byte_string = self.vocab.serializer.pack(self)
|
||
cdef uint32_t length = len(byte_string)
|
||
return struct.pack('I', length) + byte_string
|
||
|
||
def from_bytes(self, data):
|
||
"""
|
||
Deserialize, loading from bytes.
|
||
"""
|
||
self.vocab.serializer.unpack_into(data[4:], self)
|
||
return self
|
||
|
||
@staticmethod
|
||
def read_bytes(file_):
|
||
"""
|
||
A static method, used to read serialized #[code Doc] objects from
|
||
a file. For example:
|
||
|
||
Example:
|
||
from spacy.tokens.doc import Doc
|
||
loc = 'test_serialize.bin'
|
||
with open(loc, 'wb') as file_:
|
||
file_.write(nlp(u'This is a document.').to_bytes())
|
||
file_.write(nlp(u'This is another.').to_bytes())
|
||
docs = []
|
||
with open(loc, 'rb') as file_:
|
||
for byte_string in Doc.read_bytes(file_):
|
||
docs.append(Doc(nlp.vocab).from_bytes(byte_string))
|
||
assert len(docs) == 2
|
||
"""
|
||
keep_reading = True
|
||
while keep_reading:
|
||
try:
|
||
n_bytes_str = file_.read(4)
|
||
if len(n_bytes_str) < 4:
|
||
break
|
||
n_bytes = struct.unpack('I', n_bytes_str)[0]
|
||
data = file_.read(n_bytes)
|
||
except StopIteration:
|
||
keep_reading = False
|
||
yield n_bytes_str + data
|
||
|
||
def merge(self, int start_idx, int end_idx, *args, **attributes):
|
||
"""
|
||
Retokenize the document, such that the span at doc.text[start_idx : end_idx]
|
||
is merged into a single token. If start_idx and end_idx do not mark start
|
||
and end token boundaries, the document remains unchanged.
|
||
|
||
Arguments:
|
||
start_idx (int): The character index of the start of the slice to merge.
|
||
end_idx (int): The character index after the end of the slice to merge.
|
||
**attributes:
|
||
Attributes to assign to the merged token. By default, attributes
|
||
are inherited from the syntactic root token of the span.
|
||
Returns:
|
||
token (Token):
|
||
The newly merged token, or None if the start and end indices did
|
||
not fall at token boundaries.
|
||
"""
|
||
cdef unicode tag, lemma, ent_type
|
||
if len(args) == 3:
|
||
# TODO: Warn deprecation
|
||
tag, lemma, ent_type = args
|
||
attributes[TAG] = self.vocab.strings[tag]
|
||
attributes[LEMMA] = self.vocab.strings[lemma]
|
||
attributes[ENT_TYPE] = self.vocab.strings[ent_type]
|
||
elif not args:
|
||
# TODO: This code makes little sense overall. We're still
|
||
# ignoring most of the attributes?
|
||
if "label" in attributes and 'ent_type' not in attributes:
|
||
if type(attributes["label"]) == int:
|
||
attributes[ENT_TYPE] = attributes["label"]
|
||
else:
|
||
attributes[ENT_TYPE] = self.vocab.strings[attributes["label"]]
|
||
if 'ent_type' in attributes:
|
||
attributes[ENT_TYPE] = attributes['ent_type']
|
||
elif args:
|
||
raise ValueError(
|
||
"Doc.merge received %d non-keyword arguments. "
|
||
"Expected either 3 arguments (deprecated), or 0 (use keyword arguments). "
|
||
"Arguments supplied:\n%s\n"
|
||
"Keyword arguments:%s\n" % (len(args), repr(args), repr(attributes)))
|
||
|
||
cdef int start = token_by_start(self.c, self.length, start_idx)
|
||
if start == -1:
|
||
return None
|
||
cdef int end = token_by_end(self.c, self.length, end_idx)
|
||
if end == -1:
|
||
return None
|
||
# Currently we have the token index, we want the range-end index
|
||
end += 1
|
||
cdef Span span = self[start:end]
|
||
tag = self.vocab.strings[attributes.get(TAG, span.root.tag)]
|
||
lemma = self.vocab.strings[attributes.get(LEMMA, span.root.lemma)]
|
||
ent_type = self.vocab.strings[attributes.get(ENT_TYPE, span.root.ent_type)]
|
||
ent_id = attributes.get('ent_id', span.root.ent_id)
|
||
if isinstance(ent_id, basestring):
|
||
ent_id = self.vocab.strings[ent_id]
|
||
|
||
# Get LexemeC for newly merged token
|
||
new_orth = ''.join([t.text_with_ws for t in span])
|
||
if span[-1].whitespace_:
|
||
new_orth = new_orth[:-len(span[-1].whitespace_)]
|
||
cdef const LexemeC* lex = self.vocab.get(self.mem, new_orth)
|
||
# House the new merged token where it starts
|
||
cdef TokenC* token = &self.c[start]
|
||
token.spacy = self.c[end-1].spacy
|
||
if tag in self.vocab.morphology.tag_map:
|
||
self.vocab.morphology.assign_tag(token, tag)
|
||
else:
|
||
token.tag = self.vocab.strings[tag]
|
||
token.lemma = self.vocab.strings[lemma]
|
||
if ent_type == 'O':
|
||
token.ent_iob = 2
|
||
token.ent_type = 0
|
||
else:
|
||
token.ent_iob = 3
|
||
token.ent_type = self.vocab.strings[ent_type]
|
||
token.ent_id = ent_id
|
||
# Begin by setting all the head indices to absolute token positions
|
||
# This is easier to work with for now than the offsets
|
||
# Before thinking of something simpler, beware the case where a dependency
|
||
# bridges over the entity. Here the alignment of the tokens changes.
|
||
span_root = span.root.i
|
||
token.dep = span.root.dep
|
||
# We update token.lex after keeping span root and dep, since
|
||
# setting token.lex will change span.start and span.end properties
|
||
# as it modifies the character offsets in the doc
|
||
token.lex = lex
|
||
for i in range(self.length):
|
||
self.c[i].head += i
|
||
# Set the head of the merged token, and its dep relation, from the Span
|
||
token.head = self.c[span_root].head
|
||
# Adjust deps before shrinking tokens
|
||
# Tokens which point into the merged token should now point to it
|
||
# Subtract the offset from all tokens which point to >= end
|
||
offset = (end - start) - 1
|
||
for i in range(self.length):
|
||
head_idx = self.c[i].head
|
||
if start <= head_idx < end:
|
||
self.c[i].head = start
|
||
elif head_idx >= end:
|
||
self.c[i].head -= offset
|
||
# Now compress the token array
|
||
for i in range(end, self.length):
|
||
self.c[i - offset] = self.c[i]
|
||
for i in range(self.length - offset, self.length):
|
||
memset(&self.c[i], 0, sizeof(TokenC))
|
||
self.c[i].lex = &EMPTY_LEXEME
|
||
self.length -= offset
|
||
for i in range(self.length):
|
||
# ...And, set heads back to a relative position
|
||
self.c[i].head -= i
|
||
# Set the left/right children, left/right edges
|
||
set_children_from_heads(self.c, self.length)
|
||
# Clear the cached Python objects
|
||
self._py_tokens = [None] * self.length
|
||
# Return the merged Python object
|
||
return self[start]
|
||
|
||
def print_tree(self, light=False, flat=False):
|
||
"""Returns the parse trees in the JSON (Dict) format."""
|
||
return parse_tree(self, light=light, flat=flat)
|
||
|
||
|
||
cdef int token_by_start(const TokenC* tokens, int length, int start_char) except -2:
|
||
cdef int i
|
||
for i in range(length):
|
||
if tokens[i].idx == start_char:
|
||
return i
|
||
else:
|
||
return -1
|
||
|
||
|
||
cdef int token_by_end(const TokenC* tokens, int length, int end_char) except -2:
|
||
cdef int i
|
||
for i in range(length):
|
||
if tokens[i].idx + tokens[i].lex.length == end_char:
|
||
return i
|
||
else:
|
||
return -1
|
||
|
||
|
||
cdef int set_children_from_heads(TokenC* tokens, int length) except -1:
|
||
cdef TokenC* head
|
||
cdef TokenC* child
|
||
cdef int i
|
||
# Set number of left/right children to 0. We'll increment it in the loops.
|
||
for i in range(length):
|
||
tokens[i].l_kids = 0
|
||
tokens[i].r_kids = 0
|
||
tokens[i].l_edge = i
|
||
tokens[i].r_edge = i
|
||
# Set left edges
|
||
for i in range(length):
|
||
child = &tokens[i]
|
||
head = &tokens[i + child.head]
|
||
if child < head:
|
||
if child.l_edge < head.l_edge:
|
||
head.l_edge = child.l_edge
|
||
head.l_kids += 1
|
||
|
||
# Set right edges --- same as above, but iterate in reverse
|
||
for i in range(length-1, -1, -1):
|
||
child = &tokens[i]
|
||
head = &tokens[i + child.head]
|
||
if child > head:
|
||
if child.r_edge > head.r_edge:
|
||
head.r_edge = child.r_edge
|
||
head.r_kids += 1
|
||
|
||
# Set sentence starts
|
||
for i in range(length):
|
||
if tokens[i].head == 0 and tokens[i].dep != 0:
|
||
tokens[tokens[i].l_edge].sent_start = True
|
||
|