mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* Set textcat scores more consistently * Refactor textcat scores * Fixes to scorer * Add comments * Add threshold * Rename just 'f' to micro_f in textcat scorer * Fix textcat score for two-class * Fix syntax * Fix textcat score * Fix docstring
		
			
				
	
	
		
			157 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			157 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import pytest
 | 
						|
import random
 | 
						|
import numpy.random
 | 
						|
from thinc.api import fix_random_seed
 | 
						|
from spacy import util
 | 
						|
from spacy.lang.en import English
 | 
						|
from spacy.language import Language
 | 
						|
from spacy.pipeline import TextCategorizer
 | 
						|
from spacy.tokens import Doc
 | 
						|
from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
 | 
						|
 | 
						|
from ..util import make_tempdir
 | 
						|
from ...gold import Example
 | 
						|
 | 
						|
 | 
						|
TRAIN_DATA = [
 | 
						|
    ("I'm so happy.", {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}),
 | 
						|
    ("I'm so angry", {"cats": {"POSITIVE": 0.0, "NEGATIVE": 1.0}}),
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.skip(reason="Test is flakey when run with others")
 | 
						|
def test_simple_train():
 | 
						|
    nlp = Language()
 | 
						|
    textcat = nlp.add_pipe("textcat")
 | 
						|
    textcat.add_label("answer")
 | 
						|
    nlp.begin_training()
 | 
						|
    for i in range(5):
 | 
						|
        for text, answer in [
 | 
						|
            ("aaaa", 1.0),
 | 
						|
            ("bbbb", 0),
 | 
						|
            ("aa", 1.0),
 | 
						|
            ("bbbbbbbbb", 0.0),
 | 
						|
            ("aaaaaa", 1),
 | 
						|
        ]:
 | 
						|
            nlp.update((text, {"cats": {"answer": answer}}))
 | 
						|
    doc = nlp("aaa")
 | 
						|
    assert "answer" in doc.cats
 | 
						|
    assert doc.cats["answer"] >= 0.5
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.skip(reason="Test is flakey when run with others")
 | 
						|
def test_textcat_learns_multilabel():
 | 
						|
    random.seed(5)
 | 
						|
    numpy.random.seed(5)
 | 
						|
    docs = []
 | 
						|
    nlp = Language()
 | 
						|
    letters = ["a", "b", "c"]
 | 
						|
    for w1 in letters:
 | 
						|
        for w2 in letters:
 | 
						|
            cats = {letter: float(w2 == letter) for letter in letters}
 | 
						|
            docs.append((Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3), cats))
 | 
						|
    random.shuffle(docs)
 | 
						|
    textcat = TextCategorizer(nlp.vocab, width=8)
 | 
						|
    for letter in letters:
 | 
						|
        textcat.add_label(letter)
 | 
						|
    optimizer = textcat.begin_training()
 | 
						|
    for i in range(30):
 | 
						|
        losses = {}
 | 
						|
        examples = [Example.from_dict(doc, {"cats": cats}) for doc, cat in docs]
 | 
						|
        textcat.update(examples, sgd=optimizer, losses=losses)
 | 
						|
        random.shuffle(docs)
 | 
						|
    for w1 in letters:
 | 
						|
        for w2 in letters:
 | 
						|
            doc = Doc(nlp.vocab, words=["d"] * 3 + [w1, w2] + ["d"] * 3)
 | 
						|
            truth = {letter: w2 == letter for letter in letters}
 | 
						|
            textcat(doc)
 | 
						|
            for cat, score in doc.cats.items():
 | 
						|
                if not truth[cat]:
 | 
						|
                    assert score < 0.5
 | 
						|
                else:
 | 
						|
                    assert score > 0.5
 | 
						|
 | 
						|
 | 
						|
def test_label_types():
 | 
						|
    nlp = Language()
 | 
						|
    textcat = nlp.add_pipe("textcat")
 | 
						|
    textcat.add_label("answer")
 | 
						|
    with pytest.raises(ValueError):
 | 
						|
        textcat.add_label(9)
 | 
						|
 | 
						|
 | 
						|
def test_overfitting_IO():
 | 
						|
    # Simple test to try and quickly overfit the textcat component - ensuring the ML models work correctly
 | 
						|
    fix_random_seed(0)
 | 
						|
    nlp = English()
 | 
						|
    textcat = nlp.add_pipe("textcat")
 | 
						|
    # Set exclusive labels
 | 
						|
    textcat.model.attrs["multi_label"] = False
 | 
						|
    train_examples = []
 | 
						|
    for text, annotations in TRAIN_DATA:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | 
						|
        for label, value in annotations.get("cats").items():
 | 
						|
            textcat.add_label(label)
 | 
						|
    optimizer = nlp.begin_training()
 | 
						|
 | 
						|
    for i in range(50):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 | 
						|
    assert losses["textcat"] < 0.01
 | 
						|
 | 
						|
    # test the trained model
 | 
						|
    test_text = "I am happy."
 | 
						|
    doc = nlp(test_text)
 | 
						|
    cats = doc.cats
 | 
						|
    # note that by default, exclusive_classes = false so we need a bigger error margin
 | 
						|
    assert cats["POSITIVE"] > 0.9
 | 
						|
    assert cats["POSITIVE"] + cats["NEGATIVE"] == pytest.approx(1.0, 0.1)
 | 
						|
 | 
						|
    # Also test the results are still the same after IO
 | 
						|
    with make_tempdir() as tmp_dir:
 | 
						|
        nlp.to_disk(tmp_dir)
 | 
						|
        nlp2 = util.load_model_from_path(tmp_dir)
 | 
						|
        doc2 = nlp2(test_text)
 | 
						|
        cats2 = doc2.cats
 | 
						|
        assert cats2["POSITIVE"] > 0.9
 | 
						|
        assert cats2["POSITIVE"] + cats2["NEGATIVE"] == pytest.approx(1.0, 0.1)
 | 
						|
 | 
						|
    # Test scoring
 | 
						|
    scores = nlp.evaluate(
 | 
						|
        train_examples, scorer_cfg={"positive_label": "POSITIVE"}
 | 
						|
    )
 | 
						|
    assert scores["cats_micro_f"] == 1.0
 | 
						|
    assert scores["cats_score"] == 1.0
 | 
						|
    assert "cats_score_desc" in scores
 | 
						|
 | 
						|
 | 
						|
# fmt: off
 | 
						|
@pytest.mark.parametrize(
 | 
						|
    "textcat_config",
 | 
						|
    [
 | 
						|
        {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False},
 | 
						|
        {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "ngram_size": 4, "no_output_layer": False},
 | 
						|
        {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "ngram_size": 3, "no_output_layer": True},
 | 
						|
        {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "ngram_size": 2, "no_output_layer": True},
 | 
						|
        {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "ngram_size": 1, "pretrained_vectors": False, "width": 64, "conv_depth": 2, "embed_size": 2000, "window_size": 2, "dropout": None},
 | 
						|
        {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": True, "ngram_size": 5, "pretrained_vectors": False, "width": 128, "conv_depth": 2, "embed_size": 2000, "window_size": 1, "dropout": None},
 | 
						|
        {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": True, "ngram_size": 2, "pretrained_vectors": False, "width": 32, "conv_depth": 3, "embed_size": 500, "window_size": 3, "dropout": None},
 | 
						|
        {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True},
 | 
						|
        {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False},
 | 
						|
    ],
 | 
						|
)
 | 
						|
# fmt: on
 | 
						|
def test_textcat_configs(textcat_config):
 | 
						|
    pipe_config = {"model": textcat_config}
 | 
						|
    nlp = English()
 | 
						|
    textcat = nlp.add_pipe("textcat", config=pipe_config)
 | 
						|
    train_examples = []
 | 
						|
    for text, annotations in TRAIN_DATA:
 | 
						|
        train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
 | 
						|
        for label, value in annotations.get("cats").items():
 | 
						|
            textcat.add_label(label)
 | 
						|
    optimizer = nlp.begin_training()
 | 
						|
    for i in range(5):
 | 
						|
        losses = {}
 | 
						|
        nlp.update(train_examples, sgd=optimizer, losses=losses)
 |