spaCy/spacy/cli/train.py
2020-07-19 13:40:47 +02:00

550 lines
21 KiB
Python

from typing import Optional, Dict, Any
from timeit import default_timer as timer
import srsly
import tqdm
from pathlib import Path
from wasabi import msg
import thinc
import thinc.schedules
from thinc.api import use_pytorch_for_gpu_memory, require_gpu, fix_random_seed
import random
import typer
from ._util import app, Arg, Opt, parse_config_overrides, show_validation_error
from ._util import import_code
from ..gold import Corpus, Example
from ..lookups import Lookups
from .. import util
from ..errors import Errors
from ..schemas import ConfigSchema
# Don't remove - required to load the built-in architectures
from ..ml import models # noqa: F401
registry = util.registry
@app.command(
"train", context_settings={"allow_extra_args": True, "ignore_unknown_options": True}
)
def train_cli(
# fmt: off
ctx: typer.Context, # This is only used to read additional arguments
train_path: Path = Arg(..., help="Location of training data", exists=True),
dev_path: Path = Arg(..., help="Location of development data", exists=True),
config_path: Path = Arg(..., help="Path to config file", exists=True),
output_path: Optional[Path] = Opt(None, "--output", "--output-path", "-o", help="Output directory to store model in"),
code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
# fmt: on
):
"""
Train or update a spaCy model. Requires data in spaCy's binary format. To
convert data from other formats, use the `spacy convert` command. The
config file includes all settings and hyperparameters used during traing.
To override settings in the config, e.g. settings that point to local
paths or that you want to experiment with, you can override them as
command line options. For instance, --training.batch_size 128 overrides
the value of "batch_size" in the block "[training]". The --code argument
lets you pass in a Python file that's imported before training. It can be
used to register custom functions and architectures that can then be
referenced in the config.
"""
util.set_env_log(verbose)
verify_cli_args(
train_path=train_path, dev_path=dev_path, config_path=config_path,
)
overrides = parse_config_overrides(ctx.args)
import_code(code_path)
train(
config_path,
{"train": train_path, "dev": dev_path},
output_path=output_path,
config_overrides=overrides,
)
def train(
config_path: Path,
data_paths: Dict[str, Path],
raw_text: Optional[Path] = None,
output_path: Optional[Path] = None,
config_overrides: Dict[str, Any] = {},
) -> None:
msg.info(f"Loading config from: {config_path}")
# Read the config first without creating objects, to get to the original nlp_config
with show_validation_error():
config = util.load_config(
config_path,
create_objects=False,
schema=ConfigSchema,
overrides=config_overrides,
)
use_gpu = config["training"]["use_gpu"]
if use_gpu >= 0:
msg.info(f"Using GPU: {use_gpu}")
require_gpu(use_gpu)
else:
msg.info("Using CPU")
raw_text, tag_map, morph_rules, weights_data = load_from_paths(config)
if config["training"]["seed"] is not None:
fix_random_seed(config["training"]["seed"])
if config["training"].get("use_pytorch_for_gpu_memory"):
# It feels kind of weird to not have a default for this.
use_pytorch_for_gpu_memory()
nlp_config = config["nlp"]
config = util.load_config(
config_path,
create_objects=True,
schema=ConfigSchema,
overrides=config_overrides,
)
training = config["training"]
msg.info("Creating nlp from config")
nlp = util.load_model_from_config(nlp_config)
optimizer = training["optimizer"]
limit = training["limit"]
corpus = Corpus(data_paths["train"], data_paths["dev"], limit=limit)
if "textcat" in nlp_config["pipeline"]:
verify_textcat_config(nlp, nlp_config)
if training.get("resume", False):
msg.info("Resuming training")
nlp.resume_training()
else:
msg.info(f"Initializing the nlp pipeline: {nlp.pipe_names}")
train_examples = list(
corpus.train_dataset(
nlp,
shuffle=False,
gold_preproc=training["gold_preproc"],
max_length=training["max_length"],
)
)
nlp.begin_training(lambda: train_examples)
# Replace tag map with provided mapping
nlp.vocab.morphology.load_tag_map(tag_map)
# Load morph rules
nlp.vocab.morphology.load_morph_exceptions(morph_rules)
# Create empty extra lexeme tables so the data from spacy-lookups-data
# isn't loaded if these features are accessed
if config["training"]["omit_extra_lookups"]:
nlp.vocab.lookups_extra = Lookups()
nlp.vocab.lookups_extra.add_table("lexeme_cluster")
nlp.vocab.lookups_extra.add_table("lexeme_prob")
nlp.vocab.lookups_extra.add_table("lexeme_settings")
# Load a pretrained tok2vec model - cf. CLI command 'pretrain'
if weights_data is not None:
tok2vec_path = config.get("pretraining", {}).get("tok2vec_model", None)
if tok2vec_path is None:
msg.fail(
f"To use a pretrained tok2vec model, the config needs to specify which "
f"tok2vec layer to load in the setting [pretraining.tok2vec_model].",
exits=1,
)
tok2vec = config
for subpath in tok2vec_path.split("."):
tok2vec = tok2vec.get(subpath)
if not tok2vec:
msg.fail(
f"Could not locate the tok2vec model at {tok2vec_path}.", exits=1,
)
tok2vec.from_bytes(weights_data)
msg.info("Loading training corpus")
train_batches = create_train_batches(nlp, corpus, training)
evaluate = create_evaluation_callback(nlp, optimizer, corpus, training)
# Create iterator, which yields out info after each optimization step.
msg.info("Start training")
training_step_iterator = train_while_improving(
nlp,
optimizer,
train_batches,
evaluate,
dropout=training["dropout"],
accumulate_gradient=training["accumulate_gradient"],
patience=training.get("patience", 0),
max_steps=training.get("max_steps", 0),
eval_frequency=training["eval_frequency"],
raw_text=raw_text,
)
msg.info(f"Training. Initial learn rate: {optimizer.learn_rate}")
print_row = setup_printer(training, nlp)
try:
progress = tqdm.tqdm(total=training["eval_frequency"], leave=False)
for batch, info, is_best_checkpoint in training_step_iterator:
progress.update(1)
if is_best_checkpoint is not None:
progress.close()
print_row(info)
if is_best_checkpoint and output_path is not None:
update_meta(training, nlp, info)
nlp.to_disk(output_path / "model-best")
progress = tqdm.tqdm(total=training["eval_frequency"], leave=False)
except Exception as e:
if output_path is not None:
msg.warn(
f"Aborting and saving the final best model. "
f"Encountered exception: {str(e)}",
exits=1,
)
else:
raise e
finally:
if output_path is not None:
final_model_path = output_path / "model-final"
if optimizer.averages:
with nlp.use_params(optimizer.averages):
nlp.to_disk(final_model_path)
else:
nlp.to_disk(final_model_path)
msg.good(f"Saved model to output directory {final_model_path}")
def create_train_batches(nlp, corpus, cfg):
max_epochs = cfg.get("max_epochs", 0)
train_examples = list(
corpus.train_dataset(
nlp,
shuffle=True,
gold_preproc=cfg["gold_preproc"],
max_length=cfg["max_length"],
)
)
epoch = 0
batch_strategy = cfg.get("batch_by", "sequences")
while True:
if len(train_examples) == 0:
raise ValueError(Errors.E988)
epoch += 1
if batch_strategy == "padded":
batches = util.minibatch_by_padded_size(
train_examples,
size=cfg["batch_size"],
buffer=256,
discard_oversize=cfg["discard_oversize"],
)
elif batch_strategy == "words":
batches = util.minibatch_by_words(
train_examples,
size=cfg["batch_size"],
discard_oversize=cfg["discard_oversize"],
)
else:
batches = util.minibatch(train_examples, size=cfg["batch_size"])
# make sure the minibatch_by_words result is not empty, or we'll have an infinite training loop
try:
first = next(batches)
yield epoch, first
except StopIteration:
raise ValueError(Errors.E986)
for batch in batches:
yield epoch, batch
if max_epochs >= 1 and epoch >= max_epochs:
break
random.shuffle(train_examples)
def create_evaluation_callback(nlp, optimizer, corpus, cfg):
def evaluate():
dev_examples = list(
corpus.dev_dataset(
nlp, gold_preproc=cfg["gold_preproc"], ignore_misaligned=True
)
)
n_words = sum(len(ex.predicted) for ex in dev_examples)
batch_size = cfg.get("evaluation_batch_size", 128)
start_time = timer()
if optimizer.averages:
with nlp.use_params(optimizer.averages):
scorer = nlp.evaluate(dev_examples, batch_size=batch_size)
else:
scorer = nlp.evaluate(dev_examples, batch_size=batch_size)
end_time = timer()
wps = n_words / (end_time - start_time)
scores = scorer.scores
# Calculate a weighted sum based on score_weights for the main score
weights = cfg["score_weights"]
try:
weighted_score = sum(scores[s] * weights.get(s, 0.0) for s in weights)
except KeyError as e:
raise KeyError(
Errors.E983.format(
dict="score_weights", key=str(e), keys=list(scores.keys())
)
)
scores["speed"] = wps
return weighted_score, scores
return evaluate
def train_while_improving(
nlp,
optimizer,
train_data,
evaluate,
*,
dropout,
eval_frequency,
accumulate_gradient=1,
patience=0,
max_steps=0,
raw_text=None,
):
"""Train until an evaluation stops improving. Works as a generator,
with each iteration yielding a tuple `(batch, info, is_best_checkpoint)`,
where info is a dict, and is_best_checkpoint is in [True, False, None] --
None indicating that the iteration was not evaluated as a checkpoint.
The evaluation is conducted by calling the evaluate callback, which should
Positional arguments:
nlp: The spaCy pipeline to evaluate.
optimizer: The optimizer callable.
train_data (Iterable[Batch]): A generator of batches, with the training
data. Each batch should be a Sized[Tuple[Input, Annot]]. The training
data iterable needs to take care of iterating over the epochs and
shuffling.
evaluate (Callable[[], Tuple[float, Any]]): A callback to perform evaluation.
The callback should take no arguments and return a tuple
`(main_score, other_scores)`. The main_score should be a float where
higher is better. other_scores can be any object.
Every iteration, the function yields out a tuple with:
* batch: A list of Example objects.
* info: A dict with various information about the last update (see below).
* is_best_checkpoint: A value in None, False, True, indicating whether this
was the best evaluation so far. You should use this to save the model
checkpoints during training. If None, evaluation was not conducted on
that iteration. False means evaluation was conducted, but a previous
evaluation was better.
The info dict provides the following information:
epoch (int): How many passes over the data have been completed.
step (int): How many steps have been completed.
score (float): The main score form the last evaluation.
other_scores: : The other scores from the last evaluation.
loss: The accumulated losses throughout training.
checkpoints: A list of previous results, where each result is a
(score, step, epoch) tuple.
"""
if isinstance(dropout, float):
dropouts = thinc.schedules.constant(dropout)
else:
dropouts = dropout
results = []
losses = {}
to_enable = [name for name, proc in nlp.pipeline if hasattr(proc, "model")]
if raw_text:
random.shuffle(raw_text)
raw_examples = [
Example.from_dict(nlp.make_doc(rt["text"]), {}) for rt in raw_text
]
raw_batches = util.minibatch(raw_examples, size=8)
for step, (epoch, batch) in enumerate(train_data):
dropout = next(dropouts)
with nlp.select_pipes(enable=to_enable):
for subbatch in subdivide_batch(batch, accumulate_gradient):
nlp.update(subbatch, drop=dropout, losses=losses, sgd=False)
if raw_text:
# If raw text is available, perform 'rehearsal' updates,
# which use unlabelled data to reduce overfitting.
raw_batch = list(next(raw_batches))
nlp.rehearse(raw_batch, sgd=optimizer, losses=losses)
for name, proc in nlp.pipeline:
if hasattr(proc, "model"):
proc.model.finish_update(optimizer)
optimizer.step_schedules()
if not (step % eval_frequency):
score, other_scores = evaluate()
results.append((score, step))
is_best_checkpoint = score == max(results)[0]
else:
score, other_scores = (None, None)
is_best_checkpoint = None
info = {
"epoch": epoch,
"step": step,
"score": score,
"other_scores": other_scores,
"losses": losses,
"checkpoints": results,
}
yield batch, info, is_best_checkpoint
if is_best_checkpoint is not None:
losses = {}
# Stop if no improvement in `patience` updates (if specified)
best_score, best_step = max(results)
if patience and (step - best_step) >= patience:
break
# Stop if we've exhausted our max steps (if specified)
if max_steps and step >= max_steps:
break
def subdivide_batch(batch, accumulate_gradient):
batch = list(batch)
batch.sort(key=lambda eg: len(eg.predicted))
sub_len = len(batch) // accumulate_gradient
start = 0
for i in range(accumulate_gradient):
subbatch = batch[start : start + sub_len]
if subbatch:
yield subbatch
start += len(subbatch)
subbatch = batch[start:]
if subbatch:
yield subbatch
def setup_printer(training, nlp):
score_cols = training["scores"]
score_widths = [max(len(col), 6) for col in score_cols]
loss_cols = [f"Loss {pipe}" for pipe in nlp.pipe_names]
loss_widths = [max(len(col), 8) for col in loss_cols]
table_header = ["E", "#"] + loss_cols + score_cols + ["Score"]
table_header = [col.upper() for col in table_header]
table_widths = [3, 6] + loss_widths + score_widths + [6]
table_aligns = ["r" for _ in table_widths]
msg.row(table_header, widths=table_widths)
msg.row(["-" * width for width in table_widths])
def print_row(info):
try:
losses = [
"{0:.2f}".format(float(info["losses"][pipe_name]))
for pipe_name in nlp.pipe_names
]
except KeyError as e:
raise KeyError(
Errors.E983.format(
dict="scores (losses)", key=str(e), keys=list(info["losses"].keys())
)
)
try:
scores = [
"{0:.2f}".format(float(info["other_scores"][col])) for col in score_cols
]
except KeyError as e:
raise KeyError(
Errors.E983.format(
dict="scores (other)",
key=str(e),
keys=list(info["other_scores"].keys()),
)
)
data = (
[info["epoch"], info["step"]]
+ losses
+ scores
+ ["{0:.2f}".format(float(info["score"]))]
)
msg.row(data, widths=table_widths, aligns=table_aligns)
return print_row
def update_meta(training, nlp, info):
score_cols = training["scores"]
nlp.meta["performance"] = {}
for metric in score_cols:
nlp.meta["performance"][metric] = info["other_scores"][metric]
for pipe_name in nlp.pipe_names:
nlp.meta["performance"][f"{pipe_name}_loss"] = info["losses"][pipe_name]
def load_from_paths(config):
# TODO: separate checks from loading
raw_text = util.ensure_path(config["training"]["raw_text"])
if raw_text is not None:
if not raw_text.exists():
msg.fail("Can't find raw text", raw_text, exits=1)
raw_text = list(srsly.read_jsonl(config["training"]["raw_text"]))
tag_map = {}
tag_map_path = util.ensure_path(config["training"]["tag_map"])
if tag_map_path is not None:
if not tag_map_path.exists():
msg.fail("Can't find tag map path", tag_map_path, exits=1)
tag_map = srsly.read_json(config["training"]["tag_map"])
morph_rules = {}
morph_rules_path = util.ensure_path(config["training"]["morph_rules"])
if morph_rules_path is not None:
if not morph_rules_path.exists():
msg.fail("Can't find tag map path", morph_rules_path, exits=1)
morph_rules = srsly.read_json(config["training"]["morph_rules"])
weights_data = None
init_tok2vec = util.ensure_path(config["training"]["init_tok2vec"])
if init_tok2vec is not None:
if not init_tok2vec.exists():
msg.fail("Can't find pretrained tok2vec", init_tok2vec, exits=1)
with init_tok2vec.open("rb") as file_:
weights_data = file_.read()
return raw_text, tag_map, morph_rules, weights_data
def verify_cli_args(
train_path: Path,
dev_path: Path,
config_path: Path,
output_path: Optional[Path] = None,
):
# Make sure all files and paths exists if they are needed
if not config_path or not config_path.exists():
msg.fail("Config file not found", config_path, exits=1)
if not train_path or not train_path.exists():
msg.fail("Training data not found", train_path, exits=1)
if not dev_path or not dev_path.exists():
msg.fail("Development data not found", dev_path, exits=1)
if output_path is not None:
if not output_path.exists():
output_path.mkdir()
msg.good(f"Created output directory: {output_path}")
elif output_path.exists() and [p for p in output_path.iterdir() if p.is_dir()]:
msg.warn(
"Output directory is not empty.",
"This can lead to unintended side effects when saving the model. "
"Please use an empty directory or a different path instead. If "
"the specified output path doesn't exist, the directory will be "
"created for you.",
)
def verify_textcat_config(nlp, nlp_config):
# if 'positive_label' is provided: double check whether it's in the data and
# the task is binary
if nlp_config["pipeline"]["textcat"].get("positive_label", None):
textcat_labels = nlp.get_pipe("textcat").cfg.get("labels", [])
pos_label = nlp_config["pipeline"]["textcat"]["positive_label"]
if pos_label not in textcat_labels:
msg.fail(
f"The textcat's 'positive_label' config setting '{pos_label}' "
f"does not match any label in the training data.",
exits=1,
)
if len(textcat_labels) != 2:
msg.fail(
f"A textcat 'positive_label' '{pos_label}' was "
f"provided for training data that does not appear to be a "
f"binary classification problem with two labels.",
exits=1,
)