spaCy/spacy/ml/models/coref_util.py
Paul O'Leary McCann fce804a79f Minor optimization
2021-06-17 21:10:46 +09:00

260 lines
8.2 KiB
Python

from thinc.types import Ints2d
from spacy.tokens import Doc
from typing import List, Tuple, Callable, Any
from ...util import registry
# type alias to make writing this less tedious
MentionClusters = List[List[Tuple[int, int]]]
DEFAULT_CLUSTER_PREFIX = "coref_clusters"
def doc2clusters(doc: Doc, prefix=DEFAULT_CLUSTER_PREFIX) -> MentionClusters:
"""Given a doc, give the mention clusters.
This is useful for scoring.
"""
out = []
for name, val in doc.spans.items():
if not name.startswith(prefix):
continue
cluster = []
for mention in val:
cluster.append((mention.start, mention.end))
out.append(cluster)
return out
def topk(xp, arr, k, axis=None):
"""Given and array and a k value, give the top values and idxs for each row."""
part = xp.argpartition(arr, -k, axis=1)
idxs = xp.flip(part)[:, :k]
vals = xp.take_along_axis(arr, idxs, axis=1)
sidxs = xp.argsort(-vals, axis=1)
# map these idxs back to the original
oidxs = xp.take_along_axis(idxs, sidxs, axis=1)
svals = xp.take_along_axis(vals, sidxs, axis=1)
return svals, oidxs
def logsumexp(xp, arr, axis=None):
"""Emulate torch.logsumexp by returning the log of summed exponentials
along each row in the given dimension.
Reduces a 2d array to 1d."""
# from slide 5 here:
# https://www.slideshare.net/ryokuta/cupy
# Note: this was added to reproduce loss calculation in coref-hoi. If loss
# can be calculated using another method this is not necessary.
hi = arr.max(axis=axis)
hi = xp.expand_dims(hi, 1)
return hi.squeeze() + xp.log(xp.exp(arr - hi).sum(axis=axis))
# from model.py, refactored to be non-member
def get_predicted_antecedents(xp, antecedent_idx, antecedent_scores):
"""Get the ID of the antecedent for each span. -1 if no antecedent."""
predicted_antecedents = []
for i, idx in enumerate(xp.argmax(antecedent_scores, axis=1) - 1):
if idx < 0:
predicted_antecedents.append(-1)
else:
predicted_antecedents.append(antecedent_idx[i][idx])
return predicted_antecedents
# from model.py, refactored to be non-member
def get_predicted_clusters(
xp, span_starts, span_ends, antecedent_idx, antecedent_scores
):
"""Convert predictions to usable cluster data.
return values:
clusters: a list of spans (i, j) that are a cluster
Note that not all spans will be in the final output; spans with no
antecedent or referrent are omitted from clusters and mention2cluster.
"""
# Get predicted antecedents
predicted_antecedents = get_predicted_antecedents(
xp, antecedent_idx, antecedent_scores
)
# Get predicted clusters
mention_to_cluster_id = {}
predicted_clusters = []
for i, predicted_idx in enumerate(predicted_antecedents):
if predicted_idx < 0:
continue
assert i > predicted_idx, f"span idx: {i}; antecedent idx: {predicted_idx}"
# Check antecedent's cluster
antecedent = (int(span_starts[predicted_idx]), int(span_ends[predicted_idx]))
antecedent_cluster_id = mention_to_cluster_id.get(antecedent, -1)
if antecedent_cluster_id == -1:
antecedent_cluster_id = len(predicted_clusters)
predicted_clusters.append([antecedent])
mention_to_cluster_id[antecedent] = antecedent_cluster_id
# Add mention to cluster
mention = (int(span_starts[i]), int(span_ends[i]))
predicted_clusters[antecedent_cluster_id].append(mention)
mention_to_cluster_id[mention] = antecedent_cluster_id
predicted_clusters = [tuple(c) for c in predicted_clusters]
return predicted_clusters
def get_sentence_map(doc: Doc):
"""For the given span, return a list of sentence indexes."""
if doc.has_annotation("SENT_START"):
si = 0
out = []
for sent in doc.sents:
for _ in sent:
out.append(si)
si += 1
return out
else:
# If there are no sents then just return dummy values.
# Shouldn't happen in general training, but typical in init.
return [0] * len(doc)
def get_candidate_mentions(
doc: Doc, max_span_width: int = 20
) -> Tuple[List[int], List[int]]:
"""Given a Doc, return candidate mentions.
This isn't a trainable layer, it just returns raw candidates.
"""
# XXX Note that in coref-hoi the indexes are designed so you actually want [i:j+1], but here
# we're using [i:j], which is more natural.
sentence_map = get_sentence_map(doc)
begins = []
ends = []
for tok in doc:
si = sentence_map[tok.i] # sentence index
for ii in range(1, max_span_width):
ei = tok.i + ii # end index
if ei > len(doc) or sentence_map[ei] != si:
continue
begins.append(tok.i)
ends.append(ei)
return (begins, ends)
@registry.misc("spacy.CorefCandidateGenerator.v1")
def create_mention_generator() -> Any:
return get_candidate_mentions
def select_non_crossing_spans(
idxs: List[int], starts: List[int], ends: List[int], limit: int
) -> List[int]:
"""Given a list of spans sorted in descending order, return the indexes of
spans to keep, discarding spans that cross.
Nested spans are allowed.
"""
# ported from Model._extract_top_spans
selected = []
start_to_max_end = {}
end_to_min_start = {}
for idx in idxs:
if len(selected) >= limit or idx > len(starts):
break
start, end = starts[idx], ends[idx]
cross = False
for ti in range(start, end + 1):
max_end = start_to_max_end.get(ti, -1)
if ti > start and max_end > end:
cross = True
break
min_start = end_to_min_start.get(ti, -1)
if ti < end and 0 <= min_start < start:
cross = True
break
if not cross:
# this index will be kept
# record it so we can exclude anything that crosses it
selected.append(idx)
max_end = start_to_max_end.get(start, -1)
if end > max_end:
start_to_max_end[start] = end
min_start = end_to_min_start.get(end, -1)
if start == -1 or start < min_start:
end_to_min_start[end] = start
# sort idxs by order in doc
selected = sorted(selected, key=lambda idx: (starts[idx], ends[idx]))
# This was causing many repetitive entities in the output - removed for now
# while len(selected) < limit:
# selected.append(selected[0]) # this seems a bit weird?
return selected
def get_clusters_from_doc(doc) -> List[List[Tuple[int, int]]]:
"""Given a Doc, convert the cluster spans to simple int tuple lists."""
out = []
for key, val in doc.spans.items():
cluster = []
for span in val:
# TODO check that there isn't an off-by-one error here
cluster.append((span.start, span.end))
out.append(cluster)
return out
def create_gold_scores(
ments: Ints2d, clusters: List[List[Tuple[int, int]]]
) -> List[List[bool]]:
"""Given mentions considered for antecedents and gold clusters,
construct a gold score matrix. This does not include the placeholder."""
# make a mapping of mentions to cluster id
# id is not important but equality will be
ment2cid = {}
for cid, cluster in enumerate(clusters):
for ment in cluster:
ment2cid[ment] = cid
ll = len(ments)
out = []
# The .tolist() call is necessary with cupy but not numpy
mentuples = [tuple(mm.tolist()) for mm in ments]
for ii, ment in enumerate(mentuples):
if ment not in ment2cid:
# this is not in a cluster so it has no antecedent
out.append([False] * ll)
continue
# this might change if no real antecedent is a candidate
row = []
cid = ment2cid[ment]
for jj, ante in enumerate(mentuples):
# antecedents must come first
if jj >= ii:
row.append(False)
continue
row.append(cid == ment2cid.get(ante, -1))
out.append(row)
# caller needs to convert to array, and add placeholder
return out