mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			195 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			195 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import Optional, List, Dict
 | |
| from wasabi import Printer
 | |
| from pathlib import Path
 | |
| import re
 | |
| import srsly
 | |
| from thinc.api import fix_random_seed
 | |
| 
 | |
| from ..training import Corpus
 | |
| from ..tokens import Doc
 | |
| from ._util import app, Arg, Opt, setup_gpu, import_code
 | |
| from ..scorer import Scorer
 | |
| from .. import util
 | |
| from .. import displacy
 | |
| 
 | |
| 
 | |
| @app.command("evaluate")
 | |
| def evaluate_cli(
 | |
|     # fmt: off
 | |
|     model: str = Arg(..., help="Model name or path"),
 | |
|     data_path: Path = Arg(..., help="Location of binary evaluation data in .spacy format", exists=True),
 | |
|     output: Optional[Path] = Opt(None, "--output", "-o", help="Output JSON file for metrics", dir_okay=False),
 | |
|     code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
 | |
|     use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU"),
 | |
|     gold_preproc: bool = Opt(False, "--gold-preproc", "-G", help="Use gold preprocessing"),
 | |
|     displacy_path: Optional[Path] = Opt(None, "--displacy-path", "-dp", help="Directory to output rendered parses as HTML", exists=True, file_okay=False),
 | |
|     displacy_limit: int = Opt(25, "--displacy-limit", "-dl", help="Limit of parses to render as HTML"),
 | |
|     # fmt: on
 | |
| ):
 | |
|     """
 | |
|     Evaluate a trained pipeline. Expects a loadable spaCy pipeline and evaluation
 | |
|     data in the binary .spacy format. The --gold-preproc option sets up the
 | |
|     evaluation examples with gold-standard sentences and tokens for the
 | |
|     predictions. Gold preprocessing helps the annotations align to the
 | |
|     tokenization, and may result in sequences of more consistent length. However,
 | |
|     it may reduce runtime accuracy due to train/test skew. To render a sample of
 | |
|     dependency parses in a HTML file, set as output directory as the
 | |
|     displacy_path argument.
 | |
| 
 | |
|     DOCS: https://nightly.spacy.io/api/cli#evaluate
 | |
|     """
 | |
|     import_code(code_path)
 | |
|     evaluate(
 | |
|         model,
 | |
|         data_path,
 | |
|         output=output,
 | |
|         use_gpu=use_gpu,
 | |
|         gold_preproc=gold_preproc,
 | |
|         displacy_path=displacy_path,
 | |
|         displacy_limit=displacy_limit,
 | |
|         silent=False,
 | |
|     )
 | |
| 
 | |
| 
 | |
| def evaluate(
 | |
|     model: str,
 | |
|     data_path: Path,
 | |
|     output: Optional[Path] = None,
 | |
|     use_gpu: int = -1,
 | |
|     gold_preproc: bool = False,
 | |
|     displacy_path: Optional[Path] = None,
 | |
|     displacy_limit: int = 25,
 | |
|     silent: bool = True,
 | |
| ) -> Scorer:
 | |
|     msg = Printer(no_print=silent, pretty=not silent)
 | |
|     fix_random_seed()
 | |
|     setup_gpu(use_gpu)
 | |
|     data_path = util.ensure_path(data_path)
 | |
|     output_path = util.ensure_path(output)
 | |
|     displacy_path = util.ensure_path(displacy_path)
 | |
|     if not data_path.exists():
 | |
|         msg.fail("Evaluation data not found", data_path, exits=1)
 | |
|     if displacy_path and not displacy_path.exists():
 | |
|         msg.fail("Visualization output directory not found", displacy_path, exits=1)
 | |
|     corpus = Corpus(data_path, gold_preproc=gold_preproc)
 | |
|     nlp = util.load_model(model)
 | |
|     dev_dataset = list(corpus(nlp))
 | |
|     scores = nlp.evaluate(dev_dataset)
 | |
|     metrics = {
 | |
|         "TOK": "token_acc",
 | |
|         "TAG": "tag_acc",
 | |
|         "POS": "pos_acc",
 | |
|         "MORPH": "morph_acc",
 | |
|         "LEMMA": "lemma_acc",
 | |
|         "UAS": "dep_uas",
 | |
|         "LAS": "dep_las",
 | |
|         "NER P": "ents_p",
 | |
|         "NER R": "ents_r",
 | |
|         "NER F": "ents_f",
 | |
|         "TEXTCAT": "cats_score",
 | |
|         "SENT P": "sents_p",
 | |
|         "SENT R": "sents_r",
 | |
|         "SENT F": "sents_f",
 | |
|         "SPEED": "speed",
 | |
|     }
 | |
|     results = {}
 | |
|     for metric, key in metrics.items():
 | |
|         if key in scores:
 | |
|             if key == "cats_score":
 | |
|                 metric = metric + " (" + scores.get("cats_score_desc", "unk") + ")"
 | |
|             if key == "speed":
 | |
|                 results[metric] = f"{scores[key]:.0f}"
 | |
|             else:
 | |
|                 results[metric] = f"{scores[key]*100:.2f}"
 | |
|     data = {re.sub(r"[\s/]", "_", k.lower()): v for k, v in results.items()}
 | |
| 
 | |
|     msg.table(results, title="Results")
 | |
| 
 | |
|     if "ents_per_type" in scores:
 | |
|         if scores["ents_per_type"]:
 | |
|             print_ents_per_type(msg, scores["ents_per_type"])
 | |
|     if "cats_f_per_type" in scores:
 | |
|         if scores["cats_f_per_type"]:
 | |
|             print_textcats_f_per_cat(msg, scores["cats_f_per_type"])
 | |
|     if "cats_auc_per_type" in scores:
 | |
|         if scores["cats_auc_per_type"]:
 | |
|             print_textcats_auc_per_cat(msg, scores["cats_auc_per_type"])
 | |
| 
 | |
|     if displacy_path:
 | |
|         factory_names = [nlp.get_pipe_meta(pipe).factory for pipe in nlp.pipe_names]
 | |
|         docs = [ex.predicted for ex in dev_dataset]
 | |
|         render_deps = "parser" in factory_names
 | |
|         render_ents = "ner" in factory_names
 | |
|         render_parses(
 | |
|             docs,
 | |
|             displacy_path,
 | |
|             model_name=model,
 | |
|             limit=displacy_limit,
 | |
|             deps=render_deps,
 | |
|             ents=render_ents,
 | |
|         )
 | |
|         msg.good(f"Generated {displacy_limit} parses as HTML", displacy_path)
 | |
| 
 | |
|     if output_path is not None:
 | |
|         srsly.write_json(output_path, data)
 | |
|         msg.good(f"Saved results to {output_path}")
 | |
|     return data
 | |
| 
 | |
| 
 | |
| def render_parses(
 | |
|     docs: List[Doc],
 | |
|     output_path: Path,
 | |
|     model_name: str = "",
 | |
|     limit: int = 250,
 | |
|     deps: bool = True,
 | |
|     ents: bool = True,
 | |
| ):
 | |
|     docs[0].user_data["title"] = model_name
 | |
|     if ents:
 | |
|         html = displacy.render(docs[:limit], style="ent", page=True)
 | |
|         with (output_path / "entities.html").open("w", encoding="utf8") as file_:
 | |
|             file_.write(html)
 | |
|     if deps:
 | |
|         html = displacy.render(
 | |
|             docs[:limit], style="dep", page=True, options={"compact": True}
 | |
|         )
 | |
|         with (output_path / "parses.html").open("w", encoding="utf8") as file_:
 | |
|             file_.write(html)
 | |
| 
 | |
| 
 | |
| def print_ents_per_type(msg: Printer, scores: Dict[str, Dict[str, float]]) -> None:
 | |
|     data = [
 | |
|         (k, f"{v['p']*100:.2f}", f"{v['r']*100:.2f}", f"{v['f']*100:.2f}")
 | |
|         for k, v in scores.items()
 | |
|     ]
 | |
|     msg.table(
 | |
|         data,
 | |
|         header=("", "P", "R", "F"),
 | |
|         aligns=("l", "r", "r", "r"),
 | |
|         title="NER (per type)",
 | |
|     )
 | |
| 
 | |
| 
 | |
| def print_textcats_f_per_cat(msg: Printer, scores: Dict[str, Dict[str, float]]) -> None:
 | |
|     data = [
 | |
|         (k, f"{v['p']*100:.2f}", f"{v['r']*100:.2f}", f"{v['f']*100:.2f}")
 | |
|         for k, v in scores.items()
 | |
|     ]
 | |
|     msg.table(
 | |
|         data,
 | |
|         header=("", "P", "R", "F"),
 | |
|         aligns=("l", "r", "r", "r"),
 | |
|         title="Textcat F (per label)",
 | |
|     )
 | |
| 
 | |
| 
 | |
| def print_textcats_auc_per_cat(
 | |
|     msg: Printer, scores: Dict[str, Dict[str, float]]
 | |
| ) -> None:
 | |
|     msg.table(
 | |
|         [(k, f"{v:.2f}") for k, v in scores.items()],
 | |
|         header=("", "ROC AUC"),
 | |
|         aligns=("l", "r"),
 | |
|         title="Textcat ROC AUC (per label)",
 | |
|     )
 |