mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			94 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			94 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import List, Tuple, Callable, Optional, cast
 | |
| from thinc.initializers import glorot_uniform_init
 | |
| from thinc.util import partial
 | |
| from thinc.types import Ragged, Floats2d, Floats1d
 | |
| from thinc.api import Model, Ops, registry
 | |
| 
 | |
| from ..tokens import Doc
 | |
| from ..errors import Errors
 | |
| 
 | |
| 
 | |
| @registry.layers("spacy.StaticVectors.v1")
 | |
| def StaticVectors(
 | |
|     nO: Optional[int] = None,
 | |
|     nM: Optional[int] = None,
 | |
|     *,
 | |
|     dropout: Optional[float] = None,
 | |
|     init_W: Callable = glorot_uniform_init,
 | |
|     key_attr: str = "ORTH"
 | |
| ) -> Model[List[Doc], Ragged]:
 | |
|     """Embed Doc objects with their vocab's vectors table, applying a learned
 | |
|     linear projection to control the dimensionality. If a dropout rate is
 | |
|     specified, the dropout is applied per dimension over the whole batch.
 | |
|     """
 | |
|     return Model(
 | |
|         "static_vectors",
 | |
|         forward,
 | |
|         init=partial(init, init_W),
 | |
|         params={"W": None},
 | |
|         attrs={"key_attr": key_attr, "dropout_rate": dropout},
 | |
|         dims={"nO": nO, "nM": nM},
 | |
|     )
 | |
| 
 | |
| 
 | |
| def forward(
 | |
|     model: Model[List[Doc], Ragged], docs: List[Doc], is_train: bool
 | |
| ) -> Tuple[Ragged, Callable]:
 | |
|     if not len(docs):
 | |
|         return _handle_empty(model.ops, model.get_dim("nO"))
 | |
|     key_attr = model.attrs["key_attr"]
 | |
|     W = cast(Floats2d, model.ops.as_contig(model.get_param("W")))
 | |
|     V = cast(Floats2d, docs[0].vocab.vectors.data)
 | |
|     mask = _get_drop_mask(model.ops, W.shape[0], model.attrs.get("dropout_rate"))
 | |
|     rows = model.ops.flatten(
 | |
|         [doc.vocab.vectors.find(keys=doc.to_array(key_attr)) for doc in docs]
 | |
|     )
 | |
|     output = Ragged(
 | |
|         model.ops.gemm(model.ops.as_contig(V[rows]), W, trans2=True),
 | |
|         model.ops.asarray([len(doc) for doc in docs], dtype="i"),
 | |
|     )
 | |
|     if mask is not None:
 | |
|         output.data *= mask
 | |
| 
 | |
|     def backprop(d_output: Ragged) -> List[Doc]:
 | |
|         if mask is not None:
 | |
|             d_output.data *= mask
 | |
|         model.inc_grad(
 | |
|             "W",
 | |
|             model.ops.gemm(d_output.data, model.ops.as_contig(V[rows]), trans1=True),
 | |
|         )
 | |
|         return []
 | |
| 
 | |
|     return output, backprop
 | |
| 
 | |
| 
 | |
| def init(
 | |
|     init_W: Callable,
 | |
|     model: Model[List[Doc], Ragged],
 | |
|     X: Optional[List[Doc]] = None,
 | |
|     Y: Optional[Ragged] = None,
 | |
| ) -> Model[List[Doc], Ragged]:
 | |
|     nM = model.get_dim("nM") if model.has_dim("nM") else None
 | |
|     nO = model.get_dim("nO") if model.has_dim("nO") else None
 | |
|     if X is not None and len(X):
 | |
|         nM = X[0].vocab.vectors.data.shape[1]
 | |
|     if Y is not None:
 | |
|         nO = Y.data.shape[1]
 | |
| 
 | |
|     if nM is None:
 | |
|         raise ValueError(Errors.E905)
 | |
|     if nO is None:
 | |
|         raise ValueError(Errors.E904)
 | |
|     model.set_dim("nM", nM)
 | |
|     model.set_dim("nO", nO)
 | |
|     model.set_param("W", init_W(model.ops, (nO, nM)))
 | |
|     return model
 | |
| 
 | |
| 
 | |
| def _handle_empty(ops: Ops, nO: int):
 | |
|     return Ragged(ops.alloc2f(0, nO), ops.alloc1i(0)), lambda d_ragged: []
 | |
| 
 | |
| 
 | |
| def _get_drop_mask(ops: Ops, nO: int, rate: Optional[float]) -> Optional[Floats1d]:
 | |
|     return ops.get_dropout_mask((nO,), rate) if rate is not None else None
 |