mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			130 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			130 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import TYPE_CHECKING, Dict, Any, Tuple, Callable, List, Optional, IO
 | |
| from wasabi import Printer
 | |
| import tqdm
 | |
| import sys
 | |
| 
 | |
| from ..util import registry
 | |
| from .. import util
 | |
| from ..errors import Errors
 | |
| 
 | |
| if TYPE_CHECKING:
 | |
|     from ..language import Language  # noqa: F401
 | |
| 
 | |
| 
 | |
| @registry.loggers("spacy.ConsoleLogger.v1")
 | |
| def console_logger(progress_bar: bool = False):
 | |
|     def setup_printer(
 | |
|         nlp: "Language", stdout: IO = sys.stdout, stderr: IO = sys.stderr
 | |
|     ) -> Tuple[Callable[[Optional[Dict[str, Any]]], None], Callable[[], None]]:
 | |
|         msg = Printer(no_print=True)
 | |
|         # we assume here that only components are enabled that should be trained & logged
 | |
|         logged_pipes = nlp.pipe_names
 | |
|         eval_frequency = nlp.config["training"]["eval_frequency"]
 | |
|         score_weights = nlp.config["training"]["score_weights"]
 | |
|         score_cols = [col for col, value in score_weights.items() if value is not None]
 | |
|         score_widths = [max(len(col), 6) for col in score_cols]
 | |
|         loss_cols = [f"Loss {pipe}" for pipe in logged_pipes]
 | |
|         loss_widths = [max(len(col), 8) for col in loss_cols]
 | |
|         table_header = ["E", "#"] + loss_cols + score_cols + ["Score"]
 | |
|         table_header = [col.upper() for col in table_header]
 | |
|         table_widths = [3, 6] + loss_widths + score_widths + [6]
 | |
|         table_aligns = ["r" for _ in table_widths]
 | |
|         stdout.write(msg.row(table_header, widths=table_widths) + "\n")
 | |
|         stdout.write(msg.row(["-" * width for width in table_widths]) + "\n")
 | |
|         progress = None
 | |
| 
 | |
|         def log_step(info: Optional[Dict[str, Any]]) -> None:
 | |
|             nonlocal progress
 | |
| 
 | |
|             if info is None:
 | |
|                 # If we don't have a new checkpoint, just return.
 | |
|                 if progress is not None:
 | |
|                     progress.update(1)
 | |
|                 return
 | |
|             try:
 | |
|                 losses = [
 | |
|                     "{0:.2f}".format(float(info["losses"][pipe_name]))
 | |
|                     for pipe_name in logged_pipes
 | |
|                 ]
 | |
|             except KeyError as e:
 | |
|                 raise KeyError(
 | |
|                     Errors.E983.format(
 | |
|                         dict="scores (losses)",
 | |
|                         key=str(e),
 | |
|                         keys=list(info["losses"].keys()),
 | |
|                     )
 | |
|                 ) from None
 | |
| 
 | |
|             scores = []
 | |
|             for col in score_cols:
 | |
|                 score = info["other_scores"].get(col, 0.0)
 | |
|                 try:
 | |
|                     score = float(score)
 | |
|                 except TypeError:
 | |
|                     err = Errors.E916.format(name=col, score_type=type(score))
 | |
|                     raise ValueError(err) from None
 | |
|                 if col != "speed":
 | |
|                     score *= 100
 | |
|                 scores.append("{0:.2f}".format(score))
 | |
| 
 | |
|             data = (
 | |
|                 [info["epoch"], info["step"]]
 | |
|                 + losses
 | |
|                 + scores
 | |
|                 + ["{0:.2f}".format(float(info["score"]))]
 | |
|             )
 | |
|             if progress is not None:
 | |
|                 progress.close()
 | |
|             stdout.write(msg.row(data, widths=table_widths, aligns=table_aligns) + "\n")
 | |
|             if progress_bar:
 | |
|                 # Set disable=None, so that it disables on non-TTY
 | |
|                 progress = tqdm.tqdm(
 | |
|                     total=eval_frequency, disable=None, leave=False, file=stderr
 | |
|                 )
 | |
|                 progress.set_description(f"Epoch {info['epoch']+1}")
 | |
| 
 | |
|         def finalize() -> None:
 | |
|             pass
 | |
| 
 | |
|         return log_step, finalize
 | |
| 
 | |
|     return setup_printer
 | |
| 
 | |
| 
 | |
| @registry.loggers("spacy.WandbLogger.v1")
 | |
| def wandb_logger(project_name: str, remove_config_values: List[str] = []):
 | |
|     import wandb
 | |
| 
 | |
|     console = console_logger(progress_bar=False)
 | |
| 
 | |
|     def setup_logger(
 | |
|         nlp: "Language", stdout: IO = sys.stdout, stderr: IO = sys.stderr
 | |
|     ) -> Tuple[Callable[[Dict[str, Any]], None], Callable[[], None]]:
 | |
|         config = nlp.config.interpolate()
 | |
|         config_dot = util.dict_to_dot(config)
 | |
|         for field in remove_config_values:
 | |
|             del config_dot[field]
 | |
|         config = util.dot_to_dict(config_dot)
 | |
|         wandb.init(project=project_name, config=config, reinit=True)
 | |
|         console_log_step, console_finalize = console(nlp, stdout, stderr)
 | |
| 
 | |
|         def log_step(info: Optional[Dict[str, Any]]):
 | |
|             console_log_step(info)
 | |
|             if info is not None:
 | |
|                 score = info["score"]
 | |
|                 other_scores = info["other_scores"]
 | |
|                 losses = info["losses"]
 | |
|                 wandb.log({"score": score})
 | |
|                 if losses:
 | |
|                     wandb.log({f"loss_{k}": v for k, v in losses.items()})
 | |
|                 if isinstance(other_scores, dict):
 | |
|                     wandb.log(other_scores)
 | |
| 
 | |
|         def finalize() -> None:
 | |
|             console_finalize()
 | |
|             wandb.join()
 | |
| 
 | |
|         return log_step, finalize
 | |
| 
 | |
|     return setup_logger
 |