mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			268 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			268 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import Optional, Callable, Iterable, Union, List
 | |
| from thinc.api import Config, fix_random_seed, set_gpu_allocator, Model, Optimizer
 | |
| from thinc.api import set_dropout_rate, to_categorical, CosineDistance, L2Distance
 | |
| from pathlib import Path
 | |
| from functools import partial
 | |
| from collections import Counter
 | |
| import srsly
 | |
| import numpy
 | |
| import time
 | |
| import re
 | |
| from wasabi import Printer
 | |
| 
 | |
| from .example import Example
 | |
| from ..tokens import Doc
 | |
| from ..attrs import ID
 | |
| from ..ml.models.multi_task import build_cloze_multi_task_model
 | |
| from ..ml.models.multi_task import build_cloze_characters_multi_task_model
 | |
| from ..schemas import ConfigSchemaTraining, ConfigSchemaPretrain
 | |
| from ..errors import Errors
 | |
| from ..util import registry, load_model_from_config, dot_to_object
 | |
| 
 | |
| 
 | |
| def pretrain(
 | |
|     config: Config,
 | |
|     output_dir: Path,
 | |
|     resume_path: Optional[Path] = None,
 | |
|     epoch_resume: Optional[int] = None,
 | |
|     use_gpu: int = -1,
 | |
|     silent: bool = True,
 | |
| ):
 | |
|     msg = Printer(no_print=silent)
 | |
|     if config["training"]["seed"] is not None:
 | |
|         fix_random_seed(config["training"]["seed"])
 | |
|     allocator = config["training"]["gpu_allocator"]
 | |
|     if use_gpu >= 0 and allocator:
 | |
|         set_gpu_allocator(allocator)
 | |
|     nlp = load_model_from_config(config)
 | |
|     _config = nlp.config.interpolate()
 | |
|     T = registry.resolve(_config["training"], schema=ConfigSchemaTraining)
 | |
|     P = registry.resolve(_config["pretraining"], schema=ConfigSchemaPretrain)
 | |
|     corpus = dot_to_object(T, P["corpus"])
 | |
|     batcher = P["batcher"]
 | |
|     model = create_pretraining_model(nlp, P)
 | |
|     optimizer = P["optimizer"]
 | |
|     # Load in pretrained weights to resume from
 | |
|     if resume_path is not None:
 | |
|         _resume_model(model, resume_path, epoch_resume, silent=silent)
 | |
|     else:
 | |
|         # Without '--resume-path' the '--epoch-resume' argument is ignored
 | |
|         epoch_resume = 0
 | |
|     # TODO: move this to logger function?
 | |
|     tracker = ProgressTracker(frequency=10000)
 | |
|     msg.divider(f"Pre-training tok2vec layer - starting at epoch {epoch_resume}")
 | |
|     row_settings = {"widths": (3, 10, 10, 6, 4), "aligns": ("r", "r", "r", "r", "r")}
 | |
|     msg.row(("#", "# Words", "Total Loss", "Loss", "w/s"), **row_settings)
 | |
| 
 | |
|     def _save_model(epoch, is_temp=False):
 | |
|         is_temp_str = ".temp" if is_temp else ""
 | |
|         with model.use_params(optimizer.averages):
 | |
|             with (output_dir / f"model{epoch}{is_temp_str}.bin").open("wb") as file_:
 | |
|                 file_.write(model.get_ref("tok2vec").to_bytes())
 | |
|             log = {
 | |
|                 "nr_word": tracker.nr_word,
 | |
|                 "loss": tracker.loss,
 | |
|                 "epoch_loss": tracker.epoch_loss,
 | |
|                 "epoch": epoch,
 | |
|             }
 | |
|             with (output_dir / "log.jsonl").open("a") as file_:
 | |
|                 file_.write(srsly.json_dumps(log) + "\n")
 | |
| 
 | |
|     objective = create_objective(P["objective"])
 | |
|     # TODO: I think we probably want this to look more like the
 | |
|     # 'create_train_batches' function?
 | |
|     for epoch in range(epoch_resume, P["max_epochs"]):
 | |
|         for batch_id, batch in enumerate(batcher(corpus(nlp))):
 | |
|             docs = ensure_docs(batch)
 | |
|             loss = make_update(model, docs, optimizer, objective)
 | |
|             progress = tracker.update(epoch, loss, docs)
 | |
|             if progress:
 | |
|                 msg.row(progress, **row_settings)
 | |
|             if P["n_save_every"] and (batch_id % P["n_save_every"] == 0):
 | |
|                 _save_model(epoch, is_temp=True)
 | |
|         _save_model(epoch)
 | |
|         tracker.epoch_loss = 0.0
 | |
| 
 | |
| 
 | |
| def ensure_docs(examples_or_docs: Iterable[Union[Doc, Example]]) -> List[Doc]:
 | |
|     docs = []
 | |
|     for eg_or_doc in examples_or_docs:
 | |
|         if isinstance(eg_or_doc, Doc):
 | |
|             docs.append(eg_or_doc)
 | |
|         else:
 | |
|             docs.append(eg_or_doc.reference)
 | |
|     return docs
 | |
| 
 | |
| 
 | |
| def _resume_model(
 | |
|     model: Model, resume_path: Path, epoch_resume: int, silent: bool = True
 | |
| ) -> None:
 | |
|     msg = Printer(no_print=silent)
 | |
|     msg.info(f"Resume training tok2vec from: {resume_path}")
 | |
|     with resume_path.open("rb") as file_:
 | |
|         weights_data = file_.read()
 | |
|         model.get_ref("tok2vec").from_bytes(weights_data)
 | |
|     # Parse the epoch number from the given weight file
 | |
|     model_name = re.search(r"model\d+\.bin", str(resume_path))
 | |
|     if model_name:
 | |
|         # Default weight file name so read epoch_start from it by cutting off 'model' and '.bin'
 | |
|         epoch_resume = int(model_name.group(0)[5:][:-4]) + 1
 | |
|         msg.info(f"Resuming from epoch: {epoch_resume}")
 | |
|     else:
 | |
|         msg.info(f"Resuming from epoch: {epoch_resume}")
 | |
| 
 | |
| 
 | |
| def make_update(
 | |
|     model: Model, docs: Iterable[Doc], optimizer: Optimizer, objective_func: Callable
 | |
| ) -> float:
 | |
|     """Perform an update over a single batch of documents.
 | |
| 
 | |
|     docs (iterable): A batch of `Doc` objects.
 | |
|     optimizer (callable): An optimizer.
 | |
|     RETURNS loss: A float for the loss.
 | |
|     """
 | |
|     predictions, backprop = model.begin_update(docs)
 | |
|     loss, gradients = objective_func(model.ops, docs, predictions)
 | |
|     backprop(gradients)
 | |
|     model.finish_update(optimizer)
 | |
|     # Don't want to return a cupy object here
 | |
|     # The gradients are modified in-place by the BERT MLM,
 | |
|     # so we get an accurate loss
 | |
|     return float(loss)
 | |
| 
 | |
| 
 | |
| def create_objective(config: Config):
 | |
|     """Create the objective for pretraining.
 | |
| 
 | |
|     We'd like to replace this with a registry function but it's tricky because
 | |
|     we're also making a model choice based on this. For now we hard-code support
 | |
|     for two types (characters, vectors). For characters you can specify
 | |
|     n_characters, for vectors you can specify the loss.
 | |
| 
 | |
|     Bleh.
 | |
|     """
 | |
|     objective_type = config["type"]
 | |
|     if objective_type == "characters":
 | |
|         return partial(get_characters_loss, nr_char=config["n_characters"])
 | |
|     elif objective_type == "vectors":
 | |
|         if config["loss"] == "cosine":
 | |
|             distance = CosineDistance(normalize=True, ignore_zeros=True)
 | |
|             return partial(get_vectors_loss, distance=distance)
 | |
|         elif config["loss"] == "L2":
 | |
|             distance = L2Distance(normalize=True, ignore_zeros=True)
 | |
|             return partial(get_vectors_loss, distance=distance)
 | |
|         else:
 | |
|             raise ValueError(Errors.E906.format(loss_type=config["loss"]))
 | |
|     else:
 | |
|         raise ValueError(Errors.E907.format(objective_type=objective_type))
 | |
| 
 | |
| 
 | |
| def get_vectors_loss(ops, docs, prediction, distance):
 | |
|     """Compute a loss based on a distance between the documents' vectors and
 | |
|     the prediction.
 | |
|     """
 | |
|     # The simplest way to implement this would be to vstack the
 | |
|     # token.vector values, but that's a bit inefficient, especially on GPU.
 | |
|     # Instead we fetch the index into the vectors table for each of our tokens,
 | |
|     # and look them up all at once. This prevents data copying.
 | |
|     ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs])
 | |
|     target = docs[0].vocab.vectors.data[ids]
 | |
|     d_target, loss = distance(prediction, target)
 | |
|     return loss, d_target
 | |
| 
 | |
| 
 | |
| def get_characters_loss(ops, docs, prediction, nr_char):
 | |
|     """Compute a loss based on a number of characters predicted from the docs."""
 | |
|     target_ids = numpy.vstack([doc.to_utf8_array(nr_char=nr_char) for doc in docs])
 | |
|     target_ids = target_ids.reshape((-1,))
 | |
|     target = ops.asarray(to_categorical(target_ids, n_classes=256), dtype="f")
 | |
|     target = target.reshape((-1, 256 * nr_char))
 | |
|     diff = prediction - target
 | |
|     loss = (diff ** 2).sum()
 | |
|     d_target = diff / float(prediction.shape[0])
 | |
|     return loss, d_target
 | |
| 
 | |
| 
 | |
| def create_pretraining_model(nlp, pretrain_config):
 | |
|     """Define a network for the pretraining. We simply add an output layer onto
 | |
|     the tok2vec input model. The tok2vec input model needs to be a model that
 | |
|     takes a batch of Doc objects (as a list), and returns a list of arrays.
 | |
|     Each array in the output needs to have one row per token in the doc.
 | |
|     The actual tok2vec layer is stored as a reference, and only this bit will be
 | |
|     serialized to file and read back in when calling the 'train' command.
 | |
|     """
 | |
|     component = nlp.get_pipe(pretrain_config["component"])
 | |
|     if pretrain_config.get("layer"):
 | |
|         tok2vec = component.model.get_ref(pretrain_config["layer"])
 | |
|     else:
 | |
|         tok2vec = component.model
 | |
| 
 | |
|     # TODO
 | |
|     maxout_pieces = 3
 | |
|     hidden_size = 300
 | |
|     if pretrain_config["objective"]["type"] == "vectors":
 | |
|         model = build_cloze_multi_task_model(
 | |
|             nlp.vocab, tok2vec, hidden_size=hidden_size, maxout_pieces=maxout_pieces
 | |
|         )
 | |
|     elif pretrain_config["objective"]["type"] == "characters":
 | |
|         model = build_cloze_characters_multi_task_model(
 | |
|             nlp.vocab,
 | |
|             tok2vec,
 | |
|             hidden_size=hidden_size,
 | |
|             maxout_pieces=maxout_pieces,
 | |
|             nr_char=pretrain_config["objective"]["n_characters"],
 | |
|         )
 | |
|     model.initialize(X=[nlp.make_doc("Give it a doc to infer shapes")])
 | |
|     set_dropout_rate(model, pretrain_config["dropout"])
 | |
|     return model
 | |
| 
 | |
| 
 | |
| class ProgressTracker:
 | |
|     def __init__(self, frequency=1000000):
 | |
|         self.loss = 0.0
 | |
|         self.prev_loss = 0.0
 | |
|         self.nr_word = 0
 | |
|         self.words_per_epoch = Counter()
 | |
|         self.frequency = frequency
 | |
|         self.last_time = time.time()
 | |
|         self.last_update = 0
 | |
|         self.epoch_loss = 0.0
 | |
| 
 | |
|     def update(self, epoch, loss, docs):
 | |
|         self.loss += loss
 | |
|         self.epoch_loss += loss
 | |
|         words_in_batch = sum(len(doc) for doc in docs)
 | |
|         self.words_per_epoch[epoch] += words_in_batch
 | |
|         self.nr_word += words_in_batch
 | |
|         words_since_update = self.nr_word - self.last_update
 | |
|         if words_since_update >= self.frequency:
 | |
|             wps = words_since_update / (time.time() - self.last_time)
 | |
|             self.last_update = self.nr_word
 | |
|             self.last_time = time.time()
 | |
|             loss_per_word = self.loss - self.prev_loss
 | |
|             status = (
 | |
|                 epoch,
 | |
|                 self.nr_word,
 | |
|                 _smart_round(self.loss, width=10),
 | |
|                 _smart_round(loss_per_word, width=6),
 | |
|                 int(wps),
 | |
|             )
 | |
|             self.prev_loss = float(self.loss)
 | |
|             return status
 | |
|         else:
 | |
|             return None
 | |
| 
 | |
| 
 | |
| def _smart_round(
 | |
|     figure: Union[float, int], width: int = 10, max_decimal: int = 4
 | |
| ) -> str:
 | |
|     """Round large numbers as integers, smaller numbers as decimals."""
 | |
|     n_digits = len(str(int(figure)))
 | |
|     n_decimal = width - (n_digits + 1)
 | |
|     if n_decimal <= 1:
 | |
|         return str(int(figure))
 | |
|     else:
 | |
|         n_decimal = min(n_decimal, max_decimal)
 | |
|         format_str = "%." + str(n_decimal) + "f"
 | |
|         return format_str % figure
 |