mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			74 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			74 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding: utf8
 | 
						|
from __future__ import unicode_literals
 | 
						|
from thinc.neural import Model
 | 
						|
from mock import Mock
 | 
						|
import pytest
 | 
						|
import numpy
 | 
						|
 | 
						|
from ..._ml import chain, Tok2Vec, doc2feats
 | 
						|
from ...vocab import Vocab
 | 
						|
from ...pipeline import TokenVectorEncoder
 | 
						|
from ...syntax.arc_eager import ArcEager
 | 
						|
from ...syntax.nn_parser import Parser
 | 
						|
from ...tokens.doc import Doc
 | 
						|
from ...gold import GoldParse
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def vocab():
 | 
						|
    return Vocab()
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def arc_eager(vocab):
 | 
						|
    actions = ArcEager.get_actions(left_labels=['L'], right_labels=['R'])
 | 
						|
    return ArcEager(vocab.strings, actions)
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def tok2vec():
 | 
						|
    return Tok2Vec(8, 100, preprocess=doc2feats())
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def parser(vocab, arc_eager):
 | 
						|
    return Parser(vocab, moves=arc_eager, model=None)
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def model(arc_eager, tok2vec):
 | 
						|
    return Parser.Model(arc_eager.n_moves, token_vector_width=tok2vec.nO)
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def doc(vocab):
 | 
						|
    return Doc(vocab, words=['a', 'b', 'c'])
 | 
						|
 | 
						|
@pytest.fixture
 | 
						|
def gold(doc):
 | 
						|
    return GoldParse(doc, heads=[1, 1, 1], deps=['L', 'ROOT', 'R'])
 | 
						|
def test_can_init_nn_parser(parser):
 | 
						|
    assert parser.model is None
 | 
						|
 | 
						|
 | 
						|
def test_build_model(parser):
 | 
						|
    parser.model = Parser.Model(parser.moves.n_moves)
 | 
						|
    assert parser.model is not None
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.xfail
 | 
						|
def test_predict_doc(parser, tok2vec, model, doc):
 | 
						|
    doc.tensor = tok2vec([doc])
 | 
						|
    parser.model = model
 | 
						|
    parser(doc)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.xfail
 | 
						|
def test_update_doc(parser, tok2vec, model, doc, gold):
 | 
						|
    parser.model = model
 | 
						|
    tokvecs, bp_tokvecs = tok2vec.begin_update([doc])
 | 
						|
    d_tokvecs = parser.update((doc, tokvecs), gold)
 | 
						|
    assert d_tokvecs.shape == tokvecs.shape
 | 
						|
    def optimize(weights, gradient, key=None):
 | 
						|
        weights -= 0.001 * gradient
 | 
						|
    bp_tokvecs(d_tokvecs, sgd=optimize)
 | 
						|
    assert d_tokvecs.sum() == 0.
 |