mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 18:07:26 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			144 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			144 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import tqdm
 | 
						|
import srsly
 | 
						|
 | 
						|
from itertools import chain
 | 
						|
from pathlib import Path
 | 
						|
from typing import Optional, List, Iterable, cast, Union
 | 
						|
 | 
						|
from wasabi import msg
 | 
						|
 | 
						|
from ._util import app, Arg, Opt, setup_gpu, import_code, walk_directory
 | 
						|
 | 
						|
from ..tokens import Doc, DocBin
 | 
						|
from ..vocab import Vocab
 | 
						|
from ..util import ensure_path, load_model
 | 
						|
 | 
						|
 | 
						|
path_help = """Location of the documents to predict on.
 | 
						|
Can be a single file in .spacy format or a .jsonl file.
 | 
						|
Files with other extensions are treated as single plain text documents.
 | 
						|
If a directory is provided it is traversed recursively to grab
 | 
						|
all files to be processed.
 | 
						|
The files can be a mixture of .spacy, .jsonl and text files.
 | 
						|
If .jsonl is provided the specified field is going
 | 
						|
to be grabbed ("text" by default)."""
 | 
						|
 | 
						|
out_help = "Path to save the resulting .spacy file"
 | 
						|
code_help = (
 | 
						|
    "Path to Python file with additional " "code (registered functions) to be imported"
 | 
						|
)
 | 
						|
gold_help = "Use gold preprocessing provided in the .spacy files"
 | 
						|
force_msg = (
 | 
						|
    "The provided output file already exists. "
 | 
						|
    "To force overwriting the output file, set the --force or -F flag."
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
DocOrStrStream = Union[Iterable[str], Iterable[Doc]]
 | 
						|
 | 
						|
 | 
						|
def _stream_docbin(path: Path, vocab: Vocab) -> Iterable[Doc]:
 | 
						|
    """
 | 
						|
    Stream Doc objects from DocBin.
 | 
						|
    """
 | 
						|
    docbin = DocBin().from_disk(path)
 | 
						|
    for doc in docbin.get_docs(vocab):
 | 
						|
        yield doc
 | 
						|
 | 
						|
 | 
						|
def _stream_jsonl(path: Path, field: str) -> Iterable[str]:
 | 
						|
    """
 | 
						|
    Stream "text" field from JSONL. If the field "text" is
 | 
						|
    not found it raises error.
 | 
						|
    """
 | 
						|
    for entry in srsly.read_jsonl(path):
 | 
						|
        if field not in entry:
 | 
						|
            msg.fail(f"{path} does not contain the required '{field}' field.", exits=1)
 | 
						|
        else:
 | 
						|
            yield entry[field]
 | 
						|
 | 
						|
 | 
						|
def _stream_texts(paths: Iterable[Path]) -> Iterable[str]:
 | 
						|
    """
 | 
						|
    Yields strings from text files in paths.
 | 
						|
    """
 | 
						|
    for path in paths:
 | 
						|
        with open(path, "r") as fin:
 | 
						|
            text = fin.read()
 | 
						|
            yield text
 | 
						|
 | 
						|
 | 
						|
@app.command("apply")
 | 
						|
def apply_cli(
 | 
						|
    # fmt: off
 | 
						|
    model: str = Arg(..., help="Model name or path"),
 | 
						|
    data_path: Path = Arg(..., help=path_help, exists=True),
 | 
						|
    output_file: Path = Arg(..., help=out_help, dir_okay=False),
 | 
						|
    code_path: Optional[Path] = Opt(None, "--code", "-c", help=code_help),
 | 
						|
    text_key: str = Opt("text", "--text-key", "-tk", help="Key containing text string for JSONL"),
 | 
						|
    force_overwrite: bool = Opt(False, "--force", "-F", help="Force overwriting the output file"),
 | 
						|
    use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU."),
 | 
						|
    batch_size: int = Opt(1, "--batch-size", "-b", help="Batch size."),
 | 
						|
    n_process: int = Opt(1, "--n-process", "-n", help="number of processors to use.")
 | 
						|
):
 | 
						|
    """
 | 
						|
    Apply a trained pipeline to documents to get predictions.
 | 
						|
    Expects a loadable spaCy pipeline and path to the data, which
 | 
						|
    can be a directory or a file.
 | 
						|
    The data files can be provided in multiple formats:
 | 
						|
        1. .spacy files
 | 
						|
        2. .jsonl files with a specified "field" to read the text from.
 | 
						|
        3. Files with any other extension are assumed to be containing
 | 
						|
           a single document.
 | 
						|
    DOCS: https://spacy.io/api/cli#apply
 | 
						|
    """
 | 
						|
    data_path = ensure_path(data_path)
 | 
						|
    output_file = ensure_path(output_file)
 | 
						|
    code_path = ensure_path(code_path)
 | 
						|
    if output_file.exists() and not force_overwrite:
 | 
						|
        msg.fail(force_msg, exits=1)
 | 
						|
    if not data_path.exists():
 | 
						|
        msg.fail(f"Couldn't find data path: {data_path}", exits=1)
 | 
						|
    import_code(code_path)
 | 
						|
    setup_gpu(use_gpu)
 | 
						|
    apply(data_path, output_file, model, text_key, batch_size, n_process)
 | 
						|
 | 
						|
 | 
						|
def apply(
 | 
						|
    data_path: Path,
 | 
						|
    output_file: Path,
 | 
						|
    model: str,
 | 
						|
    json_field: str,
 | 
						|
    batch_size: int,
 | 
						|
    n_process: int,
 | 
						|
):
 | 
						|
    docbin = DocBin(store_user_data=True)
 | 
						|
    paths = walk_directory(data_path)
 | 
						|
    if len(paths) == 0:
 | 
						|
        docbin.to_disk(output_file)
 | 
						|
        msg.warn(
 | 
						|
            "Did not find data to process,"
 | 
						|
            f" {data_path} seems to be an empty directory."
 | 
						|
        )
 | 
						|
        return
 | 
						|
    nlp = load_model(model)
 | 
						|
    msg.good(f"Loaded model {model}")
 | 
						|
    vocab = nlp.vocab
 | 
						|
    streams: List[DocOrStrStream] = []
 | 
						|
    text_files = []
 | 
						|
    for path in paths:
 | 
						|
        if path.suffix == ".spacy":
 | 
						|
            streams.append(_stream_docbin(path, vocab))
 | 
						|
        elif path.suffix == ".jsonl":
 | 
						|
            streams.append(_stream_jsonl(path, json_field))
 | 
						|
        else:
 | 
						|
            text_files.append(path)
 | 
						|
    if len(text_files) > 0:
 | 
						|
        streams.append(_stream_texts(text_files))
 | 
						|
    datagen = cast(DocOrStrStream, chain(*streams))
 | 
						|
    for doc in tqdm.tqdm(nlp.pipe(datagen, batch_size=batch_size, n_process=n_process)):
 | 
						|
        docbin.add(doc)
 | 
						|
    if output_file.suffix == "":
 | 
						|
        output_file = output_file.with_suffix(".spacy")
 | 
						|
    docbin.to_disk(output_file)
 |