mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			148 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			148 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //- 💫 DOCS > API > SPACY
 | |
| 
 | |
| include ../../_includes/_mixins
 | |
| 
 | |
| +h(2, "load") spacy.load
 | |
|     +tag function
 | |
|     +tag-model
 | |
| 
 | |
| p
 | |
|     |  Load a model via its #[+a("/docs/usage/models#usage") shortcut link],
 | |
|     |  the name of an installed
 | |
|     |  #[+a("/docs/usage/saving-loading#generating") model package], a unicode
 | |
|     |  path or a #[code Path]-like object. spaCy will try resolving the load
 | |
|     |  argument in this order. If a model is loaded from a shortcut link or
 | |
|     |  package name, spaCy will assume it's a Python package and import it and
 | |
|     |  call the model's own #[code load()] method. If a model is loaded from a
 | |
|     |  path, spaCy will assume it's a data directory, read the language and
 | |
|     |  pipeline settings off the meta.json and initialise the #[code Language]
 | |
|     |  class. The data will be loaded in via
 | |
|     |  #[+api("language#from_disk") #[code Language.from_disk()]].
 | |
| 
 | |
| +aside-code("Example").
 | |
|     nlp = spacy.load('en') # shortcut link
 | |
|     nlp = spacy.load('en_core_web_sm') # package
 | |
|     nlp = spacy.load('/path/to/en') # unicode path
 | |
|     nlp = spacy.load(Path('/path/to/en')) # pathlib Path
 | |
| 
 | |
|     nlp = spacy.load('en', disable=['parser', 'tagger'])
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code name]
 | |
|         +cell unicode or #[code Path]
 | |
|         +cell Model to load, i.e. shortcut link, package name or path.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code disable]
 | |
|         +cell list
 | |
|         +cell
 | |
|             |  Names of pipeline components to
 | |
|             |  #[+a("/docs/usage/language-processing-pipeline#disabling") disable].
 | |
| 
 | |
|     +footrow
 | |
|         +cell returns
 | |
|         +cell #[code Language]
 | |
|         +cell A #[code Language] object with the loaded model.
 | |
| 
 | |
| +infobox("⚠️ Deprecation note")
 | |
|     .o-block
 | |
|         |  As of spaCy 2.0, the #[code path] keyword argument is deprecated. spaCy
 | |
|         |  will also raise an error if no model could be loaded and never just
 | |
|         |  return an empty #[code Language] object. If you need a blank language,
 | |
|         |  you need to import it explicitly (#[code from spacy.lang.en import English])
 | |
|         |  or use #[+api("util#get_lang_class") #[code util.get_lang_class]].
 | |
| 
 | |
|     +code-new nlp = spacy.load('/model')
 | |
|     +code-old nlp = spacy.load('en', path='/model')
 | |
| 
 | |
| +h(2, "info") spacy.info
 | |
|     +tag function
 | |
| 
 | |
| p
 | |
|     |  The same as the #[+api("cli#info") #[code info] command]. Pretty-print
 | |
|     |  information about your installation, models and local setup from within
 | |
|     |  spaCy. To get the model meta data as a dictionary instead, you can
 | |
|     |  use the #[code meta] attribute on your #[code nlp] object with a
 | |
|     |  loaded model, e.g. #[code nlp['meta']].
 | |
| 
 | |
| +aside-code("Example").
 | |
|     spacy.info()
 | |
|     spacy.info('en')
 | |
|     spacy.info('de', markdown=True)
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code model]
 | |
|         +cell unicode
 | |
|         +cell A model, i.e. shortcut link, package name or path (optional).
 | |
| 
 | |
|     +row
 | |
|         +cell #[code markdown]
 | |
|         +cell bool
 | |
|         +cell Print information as Markdown.
 | |
| 
 | |
| 
 | |
| +h(2, "explain") spacy.explain
 | |
|     +tag function
 | |
| 
 | |
| p
 | |
|     |  Get a description for a given POS tag, dependency label or entity type.
 | |
|     |  For a list of available terms, see
 | |
|     |  #[+src(gh("spacy", "spacy/glossary.py")) glossary.py].
 | |
| 
 | |
| +aside-code("Example").
 | |
|     spacy.explain('NORP')
 | |
|     # Nationalities or religious or political groups
 | |
| 
 | |
|     doc = nlp(u'Hello world')
 | |
|     for word in doc:
 | |
|         print(word.text, word.tag_, spacy.explain(word.tag_))
 | |
|     # Hello UH interjection
 | |
|     # world NN noun, singular or mass
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code term]
 | |
|         +cell unicode
 | |
|         +cell Term to explain.
 | |
| 
 | |
|     +footrow
 | |
|         +cell returns
 | |
|         +cell unicode
 | |
|         +cell The explanation, or #[code None] if not found in the glossary.
 | |
| 
 | |
| +h(2, "set_factory") spacy.set_factory
 | |
|     +tag function
 | |
|     +tag-new(2)
 | |
| 
 | |
| p
 | |
|     |  Set a factory that returns a custom
 | |
|     |  #[+a("/docs/usage/language-processing-pipeline") processing pipeline]
 | |
|     |  component. Factories are useful for creating stateful components, especially ones which depend on shared data.
 | |
| 
 | |
| +aside-code("Example").
 | |
|     def my_factory(vocab):
 | |
|         def my_component(doc):
 | |
|             return doc
 | |
|         return my_component
 | |
| 
 | |
|     spacy.set_factory('my_factory', my_factory)
 | |
|     nlp = Language(pipeline=['my_factory'])
 | |
| 
 | |
| +table(["Name", "Type", "Description"])
 | |
|     +row
 | |
|         +cell #[code factory_id]
 | |
|         +cell unicode
 | |
|         +cell
 | |
|             |  Unique name of factory. If added to a new pipeline, spaCy will
 | |
|             |  look up the factory for this ID and use it to create the
 | |
|             |  component.
 | |
| 
 | |
|     +row
 | |
|         +cell #[code factory]
 | |
|         +cell callable
 | |
|         +cell
 | |
|             |  Callable that takes a #[code Vocab] object and returns a pipeline
 | |
|             |  component.
 |