mirror of
https://github.com/magnum-opus-tender-hack/backend.git
synced 2024-11-22 09:16:36 +03:00
Reformed project, improved text search
This commit is contained in:
parent
d74c515f4e
commit
08a442d8f3
|
@ -15,7 +15,7 @@ from search.api.serializers import (
|
|||
)
|
||||
from search.models import Product
|
||||
from search.services.colors import group
|
||||
from search.services.search import process_search
|
||||
from search.services.search.main import process_search
|
||||
from search.services.autocomplete_schema import autocomplete_schema
|
||||
|
||||
from search.services.hints import get_hints
|
||||
|
|
|
@ -8,6 +8,17 @@ def autocomplete_schema(val: str, exclude: List[Dict]):
|
|||
name_exclude = [x["value"] for x in exclude if x["type"] == "Name"]
|
||||
category_exclude = [x["value"] for x in exclude if x["type"] == "Category"]
|
||||
schema = []
|
||||
schema.extend(
|
||||
[
|
||||
{
|
||||
"coordinate": char["name"].lower().replace("ё", "е").index(val.lower()),
|
||||
"value": {"type": char["name"] + "_numeric", "value": char["name"]},
|
||||
}
|
||||
for char in UnitCharacteristic.objects.filter(
|
||||
name__unaccent__icontains=val
|
||||
)[:20].values("name", "value")
|
||||
]
|
||||
)
|
||||
if not category_exclude:
|
||||
schema.extend(
|
||||
[
|
||||
|
@ -64,15 +75,4 @@ def autocomplete_schema(val: str, exclude: List[Dict]):
|
|||
.values("name", "value")
|
||||
]
|
||||
)
|
||||
schema.extend(
|
||||
[
|
||||
{
|
||||
"coordinate": char["name"].lower().replace("ё", "е").index(val.lower()),
|
||||
"value": {"type": char["name"] + "_numeric", "value": char["name"]},
|
||||
}
|
||||
for char in UnitCharacteristic.objects.filter(
|
||||
name__unaccent__icontains=val
|
||||
)[:20].values("name", "value")
|
||||
]
|
||||
)
|
||||
return schema
|
||||
|
|
|
@ -1,236 +0,0 @@
|
|||
from search.models import (
|
||||
Product,
|
||||
Characteristic,
|
||||
ProductCharacteristic,
|
||||
ProductUnitCharacteristic,
|
||||
UnitCharacteristic,
|
||||
Category,
|
||||
)
|
||||
from typing import List
|
||||
|
||||
from search.services.hints import get_hints
|
||||
from search.services.spell_check import spell_check_ru as spell_check, lemmatize
|
||||
|
||||
|
||||
def process_unit_operation(unit: ProductUnitCharacteristic.objects, operation: str):
|
||||
if operation.startswith("<=") or operation.startswith("=<"):
|
||||
return unit.filter(
|
||||
characteristic__numeric_value_max__lte=int(float(operation[2:]))
|
||||
)
|
||||
elif operation.startswith("=>") or operation.startswith(">="):
|
||||
return unit.filter(
|
||||
characteristic__numeric_value_min__gte=int(float(operation[2:]))
|
||||
)
|
||||
elif operation.startswith(">"):
|
||||
return unit.filter(
|
||||
characteristic__numeric_value_min__gt=int(float(operation[1:]))
|
||||
)
|
||||
elif operation.startswith("<"):
|
||||
return unit.filter(
|
||||
characteristic__numeric_value_max__lt=int(float(operation[1:]))
|
||||
)
|
||||
elif operation.startswith("="):
|
||||
return unit.filter(
|
||||
characteristic__numeric_value_min__gte=int(float(operation[1:])),
|
||||
characteristic__numeric_value_max__lte=int(float(operation[1:])),
|
||||
)
|
||||
return unit
|
||||
|
||||
|
||||
def _clean_text(text: str) -> List[str]:
|
||||
for st in [".", ",", "!", "?"]:
|
||||
text = text.replace(st, " ")
|
||||
text = text.split()
|
||||
re = []
|
||||
for word in text:
|
||||
re.append(word)
|
||||
return re
|
||||
|
||||
|
||||
def apply_qs_search(text: str):
|
||||
text = _clean_text(text)
|
||||
products = Product.objects.none()
|
||||
for word in text:
|
||||
products = (
|
||||
products
|
||||
| Product.objects.filter(name__unaccent__trigram_similar=word)
|
||||
| Product.objects.filter(name__unaccent__icontains=word)
|
||||
)
|
||||
products = products.order_by("-score")
|
||||
return products
|
||||
|
||||
|
||||
def apply_all_qs_search(orig_qs, text: str):
|
||||
# words
|
||||
text = _clean_text(text)
|
||||
|
||||
u_qs = None
|
||||
|
||||
# try to find Unit characteristics
|
||||
if any(x.isnumeric() for x in text):
|
||||
u_qs = ProductUnitCharacteristic.objects.filter()
|
||||
for i in range(len(text)):
|
||||
el = text[i]
|
||||
if el.isnumeric():
|
||||
if i == len(text) - 1:
|
||||
if ProductUnitCharacteristic.objects.filter(
|
||||
characteristic__name__icontains=text[i - 1]
|
||||
).exists():
|
||||
unit = ProductUnitCharacteristic.objects.filter(
|
||||
characteristic__name__icontains=text[i - 1]
|
||||
)
|
||||
u_qs = u_qs & process_unit_operation(unit, f"={text[i]}")
|
||||
del text[i]
|
||||
del text[i - 1]
|
||||
break
|
||||
elif len(text) - 1 > i >= 1:
|
||||
if ProductUnitCharacteristic.objects.filter(
|
||||
characteristic__name__icontains=text[i - 1]
|
||||
).exists():
|
||||
unit = ProductUnitCharacteristic.objects.filter(
|
||||
characteristic__name__icontains=text[i - 1]
|
||||
)[0]
|
||||
u_qs = u_qs & process_unit_operation(unit, f"={text[i]}")
|
||||
del text[i]
|
||||
del text[i - 1]
|
||||
break
|
||||
elif ProductUnitCharacteristic.objects.filter(
|
||||
characteristic__name__icontains=text[i + 1]
|
||||
).exists():
|
||||
unit = UnitCharacteristic.objects.filter(
|
||||
ProductUnitCharacteristic=text[i + 1]
|
||||
)[0]
|
||||
u_qs = u_qs & process_unit_operation(unit, f"={text[i]}")
|
||||
del text[i]
|
||||
del text[i + 1]
|
||||
break
|
||||
else:
|
||||
if ProductUnitCharacteristic.objects.filter(
|
||||
characteristic__name__icontains=text[i + 1]
|
||||
).exists():
|
||||
unit = ProductUnitCharacteristic.objects.filter(
|
||||
characteristic__name__icontains=text[i + 1]
|
||||
)[0]
|
||||
u_qs = u_qs & process_unit_operation(unit, f"={text[i]}")
|
||||
del text[i]
|
||||
del text[i + 1]
|
||||
break
|
||||
|
||||
prod = Product.objects.filter()
|
||||
for word in text:
|
||||
car = ProductCharacteristic.objects.filter(
|
||||
characteristic__value__icontains=word,
|
||||
)
|
||||
qs = (
|
||||
Product.objects.filter(name__icontains=word)
|
||||
| Product.objects.filter(name__unaccent__trigram_similar=word)
|
||||
| Product.objects.filter(category__name__icontains=word)
|
||||
| Product.objects.filter(characteristics__in=car)
|
||||
)
|
||||
prod = prod & qs
|
||||
if u_qs:
|
||||
prod = prod & Product.objects.filter(unit_characteristics__in=u_qs)
|
||||
|
||||
return prod
|
||||
|
||||
|
||||
def process_search(data: List[dict], limit=5, offset=0) -> List[dict]:
|
||||
prep_data = []
|
||||
prep_dict = {}
|
||||
prep_dict_char_type = {}
|
||||
# --------------------------------------- prepare filters -------------------------------------------------------- #
|
||||
for x in data:
|
||||
dat = dict(x)
|
||||
if x["type"] in ["Name", "Category", "Characteristic", "All"]:
|
||||
prep_data.append(
|
||||
{
|
||||
"type": dat["type"],
|
||||
"value": spell_check(
|
||||
dat["value"],
|
||||
),
|
||||
}
|
||||
)
|
||||
elif x["type"] == "Unknown":
|
||||
type = get_hints(dat["value"])
|
||||
prep_data.append(
|
||||
{
|
||||
"type": type,
|
||||
"value": spell_check(
|
||||
dat["value"],
|
||||
),
|
||||
}
|
||||
)
|
||||
else:
|
||||
val = spell_check(
|
||||
dat["value"],
|
||||
)
|
||||
if x["type"] in list(prep_dict.keys()):
|
||||
if x["type"].startswith("*"):
|
||||
unit = ProductUnitCharacteristic.objects.filter(
|
||||
characteristic__in=prep_dict_char_type[x["type"]],
|
||||
)
|
||||
prep_dict[x["type"]] = prep_dict[
|
||||
x["type"]
|
||||
] | process_unit_operation(unit, x["value"])
|
||||
else:
|
||||
prep_dict[x["type"]] = (
|
||||
prep_dict[x["type"]]
|
||||
| ProductCharacteristic.objects.filter(
|
||||
characteristic__in=prep_dict_char_type[x["type"]],
|
||||
characteristic__value__unaccent__trigram_similar=val,
|
||||
)
|
||||
| ProductCharacteristic.objects.filter(
|
||||
characteristic__in=prep_dict_char_type[x["type"]],
|
||||
characteristic__value__icontains=val,
|
||||
)
|
||||
)
|
||||
else:
|
||||
if x["type"].startswith("*"):
|
||||
prep_dict_char_type[x["type"]] = UnitCharacteristic.objects.filter(
|
||||
name__unaccent__trigram_similar=x["type"]
|
||||
) | UnitCharacteristic.objects.filter(name__icontains=x["type"])
|
||||
unit = ProductUnitCharacteristic.objects.filter(
|
||||
characteristic__in=prep_dict_char_type[x["type"]],
|
||||
)
|
||||
prep_dict[x["type"]] = process_unit_operation(unit, x["value"])
|
||||
else:
|
||||
prep_dict_char_type[x["type"]] = Characteristic.objects.filter(
|
||||
name__unaccent__trigram_similar=x["type"]
|
||||
) | Characteristic.objects.filter(name__icontains=x["type"])
|
||||
prep_dict[x["type"]] = ProductCharacteristic.objects.filter(
|
||||
characteristic__in=prep_dict_char_type[x["type"]],
|
||||
characteristic__value__unaccent__trigram_similar=val,
|
||||
) | ProductCharacteristic.objects.filter(
|
||||
characteristic__in=prep_dict_char_type[x["type"]],
|
||||
characteristic__value__icontains=val,
|
||||
)
|
||||
for el, val in prep_dict.items():
|
||||
prep_data.append({"type": el, "value": val})
|
||||
# ----------------------------------- apply filters on QuerySet -------------------------------------------------- #
|
||||
qs = Product.objects.filter()
|
||||
for x in prep_data:
|
||||
typ = x["type"]
|
||||
val = x["value"]
|
||||
if typ == "Name":
|
||||
qs = qs & apply_qs_search(val)
|
||||
qs = qs.order_by("-score")
|
||||
elif typ == "All":
|
||||
qs = apply_all_qs_search(qs, val) & qs
|
||||
elif typ == "Category":
|
||||
qs = qs.filter(category__name__icontains=val)
|
||||
qs = qs.order_by("-score")
|
||||
elif typ == "Characteristic":
|
||||
char = ProductCharacteristic.objects.filter(product__in=qs)
|
||||
char = char.filter(characteristic__value__icontains=val) | char.filter(
|
||||
characteristic__value__unaccent__trigram_similar=val
|
||||
)
|
||||
qs = qs.filter(characteristics__in=char)
|
||||
qs = qs.order_by("-score")
|
||||
elif typ == "Unknown":
|
||||
continue
|
||||
else:
|
||||
if typ.startswith("*"):
|
||||
qs = qs.filter(unit_characteristics__in=val)
|
||||
else:
|
||||
qs = qs.filter(characteristics__in=val)
|
||||
return [x.serialize_self() for x in qs.distinct()[offset : offset + limit]]
|
0
app/search/services/search/__init__.py
Normal file
0
app/search/services/search/__init__.py
Normal file
38
app/search/services/search/main.py
Normal file
38
app/search/services/search/main.py
Normal file
|
@ -0,0 +1,38 @@
|
|||
from typing import List
|
||||
|
||||
from search.services.search.methods import (
|
||||
apply_qs_search,
|
||||
apply_all_qs_search,
|
||||
apply_qs_category,
|
||||
appy_qs_characteristic,
|
||||
)
|
||||
from search.services.search.prepare import apply_union
|
||||
from search.models import Product
|
||||
|
||||
|
||||
def process_search(data: List[dict], limit=5, offset=0) -> List[dict]:
|
||||
prep_data = apply_union(data)
|
||||
# ----------------------------------- apply filters on QuerySet -------------------------------------------------- #
|
||||
qs = Product.objects.filter()
|
||||
for x in prep_data:
|
||||
typ = x["type"]
|
||||
val = x["value"]
|
||||
if typ == "Name":
|
||||
qs = qs & apply_qs_search(val)
|
||||
qs = qs.order_by("-score")
|
||||
elif typ == "All":
|
||||
qs = apply_all_qs_search(qs, val) & qs
|
||||
elif typ == "Category":
|
||||
qs = apply_qs_category(qs, val)
|
||||
qs = qs.order_by("-score")
|
||||
elif typ == "Characteristic":
|
||||
qs = appy_qs_characteristic(qs, val)
|
||||
qs = qs.order_by("-score")
|
||||
elif typ == "Unknown":
|
||||
continue
|
||||
else:
|
||||
if typ.startswith("*"):
|
||||
qs = qs.filter(unit_characteristics__in=val)
|
||||
else:
|
||||
qs = qs.filter(characteristics__in=val)
|
||||
return [x.serialize_self() for x in qs.distinct()[offset: offset + limit]]
|
130
app/search/services/search/methods.py
Normal file
130
app/search/services/search/methods.py
Normal file
|
@ -0,0 +1,130 @@
|
|||
from typing import List
|
||||
|
||||
from search.models import (
|
||||
Product,
|
||||
ProductCharacteristic,
|
||||
ProductUnitCharacteristic,
|
||||
)
|
||||
from search.services.spell_check import pos
|
||||
|
||||
|
||||
def _clean_text(text: str) -> List[str]:
|
||||
for st in [".", ",", "!", "?"]:
|
||||
text = text.replace(st, " ")
|
||||
text = text.split()
|
||||
functors_pos = {"INTJ", "PRCL", "CONJ", "PREP"} # function words
|
||||
return [word for word in text if pos(word) not in functors_pos]
|
||||
|
||||
|
||||
def process_unit_operation(unit: ProductUnitCharacteristic.objects, operation: str):
|
||||
if operation.startswith("<=") or operation.startswith("=<"):
|
||||
return unit.filter(
|
||||
characteristic__numeric_value_max__lte=int(float(operation[2:]))
|
||||
)
|
||||
elif operation.startswith("=>") or operation.startswith(">="):
|
||||
return unit.filter(
|
||||
characteristic__numeric_value_min__gte=int(float(operation[2:]))
|
||||
)
|
||||
elif operation.startswith(">"):
|
||||
return unit.filter(
|
||||
characteristic__numeric_value_min__gt=int(float(operation[1:]))
|
||||
)
|
||||
elif operation.startswith("<"):
|
||||
return unit.filter(
|
||||
characteristic__numeric_value_max__lt=int(float(operation[1:]))
|
||||
)
|
||||
elif operation.startswith("="):
|
||||
return unit.filter(
|
||||
characteristic__numeric_value_min__gte=int(float(operation[1:])),
|
||||
characteristic__numeric_value_max__lte=int(float(operation[1:])),
|
||||
)
|
||||
return unit
|
||||
|
||||
|
||||
def apply_qs_search(text: str):
|
||||
text = _clean_text(text)
|
||||
products = Product.objects.none()
|
||||
for word in text:
|
||||
products = (
|
||||
products
|
||||
| Product.objects.filter(name__unaccent__icontains=word)
|
||||
| Product.objects.filter(name__unaccent__trigram_similar=word)
|
||||
)
|
||||
products = products.order_by("-score")
|
||||
return products
|
||||
|
||||
|
||||
def apply_all_qs_search(orig_qs, text: str):
|
||||
# words
|
||||
text = _clean_text(text)
|
||||
|
||||
u_qs = None
|
||||
|
||||
# try to find Unit characteristics
|
||||
if any(x.isnumeric() for x in text):
|
||||
u_qs = ProductUnitCharacteristic.objects.filter()
|
||||
for i in range(len(text)):
|
||||
el = text[i]
|
||||
if el.isnumeric():
|
||||
if i == len(text) - 1:
|
||||
if unit := ProductUnitCharacteristic.objects.filter(
|
||||
characteristic__name__icontains=text[i - 1]
|
||||
):
|
||||
u_qs = u_qs & process_unit_operation(unit, f"={text[i]}")
|
||||
del text[i - 1]
|
||||
del text[i - 1]
|
||||
break
|
||||
elif len(text) - 1 > i >= 1:
|
||||
if unit := ProductUnitCharacteristic.objects.filter(
|
||||
characteristic__name__icontains=text[i + 1]
|
||||
):
|
||||
u_qs = u_qs & process_unit_operation(unit, f"={text[i]}")
|
||||
del text[i]
|
||||
del text[i]
|
||||
break
|
||||
elif unit := ProductUnitCharacteristic.objects.filter(
|
||||
characteristic__name__icontains=text[i - 1]
|
||||
):
|
||||
u_qs = u_qs & process_unit_operation(unit, f"={text[i]}")
|
||||
del text[i - 1]
|
||||
del text[i - 1]
|
||||
break
|
||||
else:
|
||||
if unit := ProductUnitCharacteristic.objects.filter(
|
||||
characteristic__name__icontains=text[i + 1]
|
||||
):
|
||||
u_qs = u_qs & process_unit_operation(unit, f"={text[i]}")
|
||||
del text[i]
|
||||
del text[i]
|
||||
break
|
||||
|
||||
prod = Product.objects.filter()
|
||||
for word in text:
|
||||
car = ProductCharacteristic.objects.filter(
|
||||
characteristic__value__icontains=word,
|
||||
)
|
||||
qs = (
|
||||
Product.objects.filter(name__icontains=word)
|
||||
| Product.objects.filter(category__name__icontains=word)
|
||||
| Product.objects.filter(characteristics__in=car)
|
||||
)
|
||||
prod = prod & qs
|
||||
|
||||
if u_qs:
|
||||
prod = prod & Product.objects.filter(unit_characteristics__in=u_qs)
|
||||
|
||||
return prod
|
||||
|
||||
|
||||
def apply_qs_category(qs, name: str):
|
||||
qs = qs.filter(category__name__icontains=name)
|
||||
return qs
|
||||
|
||||
|
||||
def appy_qs_characteristic(qs, name: str):
|
||||
char = ProductCharacteristic.objects.filter(product__in=qs)
|
||||
char = char.filter(characteristic__value__icontains=name) | char.filter(
|
||||
characteristic__value__unaccent__trigram_similar=name
|
||||
)
|
||||
qs = qs.filter(characteristics__in=char)
|
||||
return qs
|
87
app/search/services/search/prepare.py
Normal file
87
app/search/services/search/prepare.py
Normal file
|
@ -0,0 +1,87 @@
|
|||
from typing import List, Dict
|
||||
|
||||
from rest_framework.exceptions import ValidationError
|
||||
|
||||
from search.models import Characteristic, ProductCharacteristic, ProductUnitCharacteristic, UnitCharacteristic
|
||||
from search.services.hints import get_hints
|
||||
from search.services.search.methods import process_unit_operation
|
||||
)
|
||||
from search.services.spell_check import spell_check_ru as spell_check
|
||||
|
||||
|
||||
def apply_union(data: List[Dict]) -> List[Dict]:
|
||||
prep_data = []
|
||||
prep_dict = {}
|
||||
prep_dict_char_type = {}
|
||||
# --------------------------------------- prepare filters -------------------------------------------------------- #
|
||||
for x in data:
|
||||
dat = dict(x)
|
||||
if "type" not in dat or "value" not in dat:
|
||||
raise ValidationError("Improper body structure")
|
||||
|
||||
if x["type"] in ["Name", "Category", "Characteristic", "All"]:
|
||||
prep_data.append(
|
||||
{
|
||||
"type": dat["type"],
|
||||
"value": spell_check(
|
||||
dat["value"],
|
||||
),
|
||||
}
|
||||
)
|
||||
elif x["type"] == "Unknown":
|
||||
type = get_hints(dat["value"])
|
||||
prep_data.append(
|
||||
{
|
||||
"type": type,
|
||||
"value": spell_check(
|
||||
dat["value"],
|
||||
),
|
||||
}
|
||||
)
|
||||
else:
|
||||
val = spell_check(
|
||||
dat["value"],
|
||||
)
|
||||
if x["type"] in list(prep_dict.keys()):
|
||||
if x["type"].startswith("*"):
|
||||
unit = ProductUnitCharacteristic.objects.filter(
|
||||
characteristic__in=prep_dict_char_type[x["type"]],
|
||||
)
|
||||
prep_dict[x["type"]] = prep_dict[
|
||||
x["type"]
|
||||
] | process_unit_operation(unit, x["value"])
|
||||
else:
|
||||
prep_dict[x["type"]] = (
|
||||
prep_dict[x["type"]]
|
||||
| ProductCharacteristic.objects.filter(
|
||||
characteristic__in=prep_dict_char_type[x["type"]],
|
||||
characteristic__value__unaccent__trigram_similar=val,
|
||||
)
|
||||
| ProductCharacteristic.objects.filter(
|
||||
characteristic__in=prep_dict_char_type[x["type"]],
|
||||
characteristic__value__icontains=val,
|
||||
)
|
||||
)
|
||||
else:
|
||||
if x["type"].startswith("*"):
|
||||
prep_dict_char_type[x["type"]] = UnitCharacteristic.objects.filter(
|
||||
name__unaccent__trigram_similar=x["type"]
|
||||
) | UnitCharacteristic.objects.filter(name__icontains=x["type"])
|
||||
unit = ProductUnitCharacteristic.objects.filter(
|
||||
characteristic__in=prep_dict_char_type[x["type"]],
|
||||
)
|
||||
prep_dict[x["type"]] = process_unit_operation(unit, x["value"])
|
||||
else:
|
||||
prep_dict_char_type[x["type"]] = Characteristic.objects.filter(
|
||||
name__unaccent__trigram_similar=x["type"]
|
||||
) | Characteristic.objects.filter(name__icontains=x["type"])
|
||||
prep_dict[x["type"]] = ProductCharacteristic.objects.filter(
|
||||
characteristic__in=prep_dict_char_type[x["type"]],
|
||||
characteristic__value__unaccent__trigram_similar=val,
|
||||
) | ProductCharacteristic.objects.filter(
|
||||
characteristic__in=prep_dict_char_type[x["type"]],
|
||||
characteristic__value__icontains=val,
|
||||
)
|
||||
for el, val in prep_dict.items():
|
||||
prep_data.append({"type": el, "value": val})
|
||||
return prep_data
|
|
@ -23,5 +23,8 @@ morph = pymorphy2.MorphAnalyzer()
|
|||
|
||||
|
||||
def lemmatize(word):
|
||||
p = morph.parse(word)[0]
|
||||
return p.normal_form
|
||||
return morph.parse(word)[0].normal_form
|
||||
|
||||
|
||||
def pos(word):
|
||||
return morph.parse(word)[0].tag.POS
|
||||
|
|
|
@ -11,4 +11,5 @@ psycopg2-binary==2.9.4
|
|||
|
||||
celery==5.2.7
|
||||
|
||||
pyspellchecker==0.7.0
|
||||
pyspellchecker==0.7.0
|
||||
pymorphy2
|
||||
|
|
Loading…
Reference in New Issue
Block a user