2019-11-21 05:42:52 +03:00
|
|
|
import unittest
|
2019-07-06 23:40:53 +03:00
|
|
|
import zlib
|
|
|
|
from io import BytesIO
|
|
|
|
|
2020-01-05 00:07:59 +03:00
|
|
|
import pytest
|
2017-06-21 13:31:32 +03:00
|
|
|
from PIL import Image, ImageFile, PngImagePlugin
|
2014-06-10 13:10:47 +04:00
|
|
|
|
2020-01-05 00:07:59 +03:00
|
|
|
from .helper import (
|
|
|
|
PillowLeakTestCase,
|
|
|
|
PillowTestCase,
|
|
|
|
hopper,
|
|
|
|
is_big_endian,
|
|
|
|
is_win32,
|
|
|
|
on_ci,
|
|
|
|
)
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2018-12-27 04:19:44 +03:00
|
|
|
try:
|
|
|
|
from PIL import _webp
|
2019-06-13 18:54:11 +03:00
|
|
|
|
2018-12-27 04:19:44 +03:00
|
|
|
HAVE_WEBP = True
|
|
|
|
except ImportError:
|
|
|
|
HAVE_WEBP = False
|
|
|
|
|
2012-10-16 00:26:38 +04:00
|
|
|
codecs = dir(Image.core)
|
|
|
|
|
2017-06-21 13:31:32 +03:00
|
|
|
|
2012-10-16 00:26:38 +04:00
|
|
|
# sample png stream
|
|
|
|
|
2014-09-04 13:09:52 +04:00
|
|
|
TEST_PNG_FILE = "Tests/images/hopper.png"
|
2012-10-16 00:26:38 +04:00
|
|
|
|
|
|
|
# stuff to create inline PNG images
|
|
|
|
|
|
|
|
MAGIC = PngImagePlugin._MAGIC
|
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
|
2012-10-16 00:26:38 +04:00
|
|
|
def chunk(cid, *data):
|
2015-04-24 11:24:52 +03:00
|
|
|
test_file = BytesIO()
|
|
|
|
PngImagePlugin.putchunk(*(test_file, cid) + data)
|
|
|
|
return test_file.getvalue()
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2018-03-03 12:54:00 +03:00
|
|
|
|
2012-10-16 00:26:38 +04:00
|
|
|
o32 = PngImagePlugin.o32
|
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
IHDR = chunk(b"IHDR", o32(1), o32(1), b"\x08\x02", b"\0\0\0")
|
2012-10-16 00:26:38 +04:00
|
|
|
IDAT = chunk(b"IDAT")
|
|
|
|
IEND = chunk(b"IEND")
|
|
|
|
|
|
|
|
HEAD = MAGIC + IHDR
|
|
|
|
TAIL = IDAT + IEND
|
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
|
2012-10-16 00:26:38 +04:00
|
|
|
def load(data):
|
|
|
|
return Image.open(BytesIO(data))
|
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
|
2012-10-16 00:26:38 +04:00
|
|
|
def roundtrip(im, **options):
|
|
|
|
out = BytesIO()
|
|
|
|
im.save(out, "PNG", **options)
|
|
|
|
out.seek(0)
|
|
|
|
return Image.open(out)
|
|
|
|
|
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
class TestFilePng(PillowTestCase):
|
|
|
|
def setUp(self):
|
|
|
|
if "zip_encoder" not in codecs or "zip_decoder" not in codecs:
|
|
|
|
self.skipTest("zip/deflate support not available")
|
|
|
|
|
2017-12-20 13:27:13 +03:00
|
|
|
def get_chunks(self, filename):
|
|
|
|
chunks = []
|
|
|
|
with open(filename, "rb") as fp:
|
|
|
|
fp.read(8)
|
2017-12-20 14:45:52 +03:00
|
|
|
with PngImagePlugin.PngStream(fp) as png:
|
|
|
|
while True:
|
|
|
|
cid, pos, length = png.read()
|
|
|
|
chunks.append(cid)
|
|
|
|
try:
|
|
|
|
s = png.call(cid, pos, length)
|
|
|
|
except EOFError:
|
|
|
|
break
|
|
|
|
png.crc(cid, s)
|
2017-12-20 13:27:13 +03:00
|
|
|
return chunks
|
|
|
|
|
2020-01-05 00:07:59 +03:00
|
|
|
@pytest.mark.xfail(is_big_endian() and on_ci(), reason="Fails on big-endian")
|
2014-06-10 13:10:47 +04:00
|
|
|
def test_sanity(self):
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
# internal version number
|
2018-04-10 13:40:44 +03:00
|
|
|
self.assertRegex(Image.core.zlib_version, r"\d+\.\d+\.\d+(\.\d+)?$")
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2015-04-24 11:24:52 +03:00
|
|
|
test_file = self.tempfile("temp.png")
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2015-04-24 11:24:52 +03:00
|
|
|
hopper("RGB").save(test_file)
|
2012-10-16 00:26:38 +04:00
|
|
|
|
Improve handling of file resources
Follow Python's file object semantics. User code is responsible for
closing resources (usually through a context manager) in a deterministic
way.
To achieve this, remove __del__ functions. These functions used to
closed open file handlers in an attempt to silence Python
ResourceWarnings. However, using __del__ has the following drawbacks:
- __del__ isn't called until the object's reference count reaches 0.
Therefore, resource handlers remain open or in use longer than
necessary.
- The __del__ method isn't guaranteed to execute on system exit. See the
Python documentation:
https://docs.python.org/3/reference/datamodel.html#object.__del__
> It is not guaranteed that __del__() methods are called for objects
> that still exist when the interpreter exits.
- Exceptions that occur inside __del__ are ignored instead of raised.
This has the potential of hiding bugs. This is also in the Python
documentation:
> Warning: Due to the precarious circumstances under which __del__()
> methods are invoked, exceptions that occur during their execution
> are ignored, and a warning is printed to sys.stderr instead.
Instead, always close resource handlers when they are no longer in use.
This will close the file handler at a specified point in the user's code
and not wait until the interpreter chooses to. It is always guaranteed
to run. And, if an exception occurs while closing the file handler, the
bug will not be ignored.
Now, when code receives a ResourceWarning, it will highlight an area
that is mishandling resources. It should not simply be silenced, but
fixed by closing resources with a context manager.
All warnings that were emitted during tests have been cleaned up. To
enable warnings, I passed the `-Wa` CLI option to Python. This exposed
some mishandling of resources in ImageFile.__init__() and
SpiderImagePlugin.loadImageSeries(), they too were fixed.
2019-05-25 19:30:58 +03:00
|
|
|
with Image.open(test_file) as im:
|
|
|
|
im.load()
|
|
|
|
self.assertEqual(im.mode, "RGB")
|
|
|
|
self.assertEqual(im.size, (128, 128))
|
|
|
|
self.assertEqual(im.format, "PNG")
|
|
|
|
self.assertEqual(im.get_format_mimetype(), "image/png")
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2019-03-12 09:28:42 +03:00
|
|
|
for mode in ["1", "L", "P", "RGB", "I", "I;16"]:
|
|
|
|
im = hopper(mode)
|
|
|
|
im.save(test_file)
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open(test_file) as reloaded:
|
|
|
|
if mode == "I;16":
|
|
|
|
reloaded = reloaded.convert(mode)
|
|
|
|
self.assert_image_equal(reloaded, im)
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2015-07-03 08:03:25 +03:00
|
|
|
def test_invalid_file(self):
|
2015-07-03 09:22:56 +03:00
|
|
|
invalid_file = "Tests/images/flower.jpg"
|
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
self.assertRaises(SyntaxError, PngImagePlugin.PngImageFile, invalid_file)
|
2015-07-03 08:03:25 +03:00
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
def test_broken(self):
|
|
|
|
# Check reading of totally broken files. In this case, the test
|
|
|
|
# file was checked into Subversion as a text file.
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2015-04-24 11:24:52 +03:00
|
|
|
test_file = "Tests/images/broken.png"
|
2017-09-01 14:05:40 +03:00
|
|
|
self.assertRaises(IOError, Image.open, test_file)
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
def test_bad_text(self):
|
|
|
|
# Make sure PIL can read malformed tEXt chunks (@PIL152)
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
im = load(HEAD + chunk(b"tEXt") + TAIL)
|
2014-06-10 13:10:47 +04:00
|
|
|
self.assertEqual(im.info, {})
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
im = load(HEAD + chunk(b"tEXt", b"spam") + TAIL)
|
|
|
|
self.assertEqual(im.info, {"spam": ""})
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
im = load(HEAD + chunk(b"tEXt", b"spam\0") + TAIL)
|
|
|
|
self.assertEqual(im.info, {"spam": ""})
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
im = load(HEAD + chunk(b"tEXt", b"spam\0egg") + TAIL)
|
|
|
|
self.assertEqual(im.info, {"spam": "egg"})
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
im = load(HEAD + chunk(b"tEXt", b"spam\0egg\0") + TAIL)
|
|
|
|
self.assertEqual(im.info, {"spam": "egg\x00"})
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
def test_bad_ztxt(self):
|
|
|
|
# Test reading malformed zTXt chunks (python-pillow/Pillow#318)
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
im = load(HEAD + chunk(b"zTXt") + TAIL)
|
2014-06-10 13:10:47 +04:00
|
|
|
self.assertEqual(im.info, {})
|
2013-08-20 16:17:17 +04:00
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
im = load(HEAD + chunk(b"zTXt", b"spam") + TAIL)
|
|
|
|
self.assertEqual(im.info, {"spam": ""})
|
2013-08-20 16:17:17 +04:00
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
im = load(HEAD + chunk(b"zTXt", b"spam\0") + TAIL)
|
|
|
|
self.assertEqual(im.info, {"spam": ""})
|
2013-08-20 16:17:17 +04:00
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
im = load(HEAD + chunk(b"zTXt", b"spam\0\0") + TAIL)
|
|
|
|
self.assertEqual(im.info, {"spam": ""})
|
2013-08-20 16:17:17 +04:00
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
im = load(HEAD + chunk(b"zTXt", b"spam\0\0" + zlib.compress(b"egg")[:1]) + TAIL)
|
|
|
|
self.assertEqual(im.info, {"spam": ""})
|
2013-08-20 16:17:17 +04:00
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
im = load(HEAD + chunk(b"zTXt", b"spam\0\0" + zlib.compress(b"egg")) + TAIL)
|
|
|
|
self.assertEqual(im.info, {"spam": "egg"})
|
2013-08-20 16:17:17 +04:00
|
|
|
|
2014-07-23 12:09:06 +04:00
|
|
|
def test_bad_itxt(self):
|
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
im = load(HEAD + chunk(b"iTXt") + TAIL)
|
2014-07-23 12:09:06 +04:00
|
|
|
self.assertEqual(im.info, {})
|
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
im = load(HEAD + chunk(b"iTXt", b"spam") + TAIL)
|
2014-07-23 12:09:06 +04:00
|
|
|
self.assertEqual(im.info, {})
|
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
im = load(HEAD + chunk(b"iTXt", b"spam\0") + TAIL)
|
2014-07-23 12:09:06 +04:00
|
|
|
self.assertEqual(im.info, {})
|
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
im = load(HEAD + chunk(b"iTXt", b"spam\0\x02") + TAIL)
|
2014-07-23 12:09:06 +04:00
|
|
|
self.assertEqual(im.info, {})
|
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
im = load(HEAD + chunk(b"iTXt", b"spam\0\0\0foo\0") + TAIL)
|
2014-07-23 12:09:06 +04:00
|
|
|
self.assertEqual(im.info, {})
|
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
im = load(HEAD + chunk(b"iTXt", b"spam\0\0\0en\0Spam\0egg") + TAIL)
|
2014-07-23 12:09:06 +04:00
|
|
|
self.assertEqual(im.info, {"spam": "egg"})
|
|
|
|
self.assertEqual(im.info["spam"].lang, "en")
|
|
|
|
self.assertEqual(im.info["spam"].tkey, "Spam")
|
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
im = load(
|
|
|
|
HEAD
|
|
|
|
+ chunk(b"iTXt", b"spam\0\1\0en\0Spam\0" + zlib.compress(b"egg")[:1])
|
|
|
|
+ TAIL
|
|
|
|
)
|
|
|
|
self.assertEqual(im.info, {"spam": ""})
|
2014-07-23 12:09:06 +04:00
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
im = load(
|
|
|
|
HEAD
|
|
|
|
+ chunk(b"iTXt", b"spam\0\1\1en\0Spam\0" + zlib.compress(b"egg"))
|
|
|
|
+ TAIL
|
|
|
|
)
|
2014-07-23 12:09:06 +04:00
|
|
|
self.assertEqual(im.info, {})
|
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
im = load(
|
|
|
|
HEAD
|
|
|
|
+ chunk(b"iTXt", b"spam\0\1\0en\0Spam\0" + zlib.compress(b"egg"))
|
|
|
|
+ TAIL
|
|
|
|
)
|
2014-07-23 12:09:06 +04:00
|
|
|
self.assertEqual(im.info, {"spam": "egg"})
|
|
|
|
self.assertEqual(im.info["spam"].lang, "en")
|
|
|
|
self.assertEqual(im.info["spam"].tkey, "Spam")
|
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
def test_interlace(self):
|
2013-08-20 16:17:17 +04:00
|
|
|
|
2015-04-24 11:24:52 +03:00
|
|
|
test_file = "Tests/images/pil123p.png"
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open(test_file) as im:
|
|
|
|
self.assert_image(im, "P", (162, 150))
|
|
|
|
self.assertTrue(im.info.get("interlace"))
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2019-11-25 23:03:23 +03:00
|
|
|
im.load()
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2015-04-24 11:24:52 +03:00
|
|
|
test_file = "Tests/images/pil123rgba.png"
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open(test_file) as im:
|
|
|
|
self.assert_image(im, "RGBA", (162, 150))
|
|
|
|
self.assertTrue(im.info.get("interlace"))
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2019-11-25 23:03:23 +03:00
|
|
|
im.load()
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
def test_load_transparent_p(self):
|
2015-04-24 11:24:52 +03:00
|
|
|
test_file = "Tests/images/pil123p.png"
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open(test_file) as im:
|
|
|
|
self.assert_image(im, "P", (162, 150))
|
|
|
|
im = im.convert("RGBA")
|
2014-06-10 13:10:47 +04:00
|
|
|
self.assert_image(im, "RGBA", (162, 150))
|
2013-03-11 23:33:04 +04:00
|
|
|
|
2016-10-02 13:31:53 +03:00
|
|
|
# image has 124 unique alpha values
|
2019-06-13 18:54:11 +03:00
|
|
|
self.assertEqual(len(im.getchannel("A").getcolors()), 124)
|
2013-03-11 23:33:04 +04:00
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
def test_load_transparent_rgb(self):
|
2015-04-24 11:24:52 +03:00
|
|
|
test_file = "Tests/images/rgb_trns.png"
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open(test_file) as im:
|
|
|
|
self.assertEqual(im.info["transparency"], (0, 255, 52))
|
2013-03-11 23:33:04 +04:00
|
|
|
|
2019-11-25 23:03:23 +03:00
|
|
|
self.assert_image(im, "RGB", (64, 64))
|
|
|
|
im = im.convert("RGBA")
|
2014-06-10 13:10:47 +04:00
|
|
|
self.assert_image(im, "RGBA", (64, 64))
|
2013-11-23 04:04:51 +04:00
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
# image has 876 transparent pixels
|
2019-06-13 18:54:11 +03:00
|
|
|
self.assertEqual(im.getchannel("A").getcolors()[0][0], 876)
|
2013-11-23 04:04:51 +04:00
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
def test_save_p_transparent_palette(self):
|
|
|
|
in_file = "Tests/images/pil123p.png"
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open(in_file) as im:
|
|
|
|
# 'transparency' contains a byte string with the opacity for
|
|
|
|
# each palette entry
|
|
|
|
self.assertEqual(len(im.info["transparency"]), 256)
|
2016-04-19 10:31:15 +03:00
|
|
|
|
2019-11-25 23:03:23 +03:00
|
|
|
test_file = self.tempfile("temp.png")
|
|
|
|
im.save(test_file)
|
2013-03-26 14:24:07 +04:00
|
|
|
|
2016-04-19 10:31:15 +03:00
|
|
|
# check if saved image contains same transparency
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open(test_file) as im:
|
|
|
|
self.assertEqual(len(im.info["transparency"]), 256)
|
2016-04-19 10:31:15 +03:00
|
|
|
|
2019-11-25 23:03:23 +03:00
|
|
|
self.assert_image(im, "P", (162, 150))
|
|
|
|
im = im.convert("RGBA")
|
2016-04-19 10:31:15 +03:00
|
|
|
self.assert_image(im, "RGBA", (162, 150))
|
|
|
|
|
2016-05-03 21:46:22 +03:00
|
|
|
# image has 124 unique alpha values
|
2019-06-13 18:54:11 +03:00
|
|
|
self.assertEqual(len(im.getchannel("A").getcolors()), 124)
|
2016-04-19 10:31:15 +03:00
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
def test_save_p_single_transparency(self):
|
|
|
|
in_file = "Tests/images/p_trns_single.png"
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open(in_file) as im:
|
|
|
|
# pixel value 164 is full transparent
|
|
|
|
self.assertEqual(im.info["transparency"], 164)
|
|
|
|
self.assertEqual(im.getpixel((31, 31)), 164)
|
2016-04-19 10:31:15 +03:00
|
|
|
|
2019-11-25 23:03:23 +03:00
|
|
|
test_file = self.tempfile("temp.png")
|
|
|
|
im.save(test_file)
|
2016-04-19 10:31:15 +03:00
|
|
|
|
|
|
|
# check if saved image contains same transparency
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open(test_file) as im:
|
|
|
|
self.assertEqual(im.info["transparency"], 164)
|
|
|
|
self.assertEqual(im.getpixel((31, 31)), 164)
|
|
|
|
self.assert_image(im, "P", (64, 64))
|
|
|
|
im = im.convert("RGBA")
|
2016-04-19 10:31:15 +03:00
|
|
|
self.assert_image(im, "RGBA", (64, 64))
|
|
|
|
|
|
|
|
self.assertEqual(im.getpixel((31, 31)), (0, 255, 52, 0))
|
|
|
|
|
|
|
|
# image has 876 transparent pixels
|
2019-06-13 18:54:11 +03:00
|
|
|
self.assertEqual(im.getchannel("A").getcolors()[0][0], 876)
|
2016-04-19 10:31:15 +03:00
|
|
|
|
|
|
|
def test_save_p_transparent_black(self):
|
|
|
|
# check if solid black image with full transparency
|
|
|
|
# is supported (check for #1838)
|
|
|
|
im = Image.new("RGBA", (10, 10), (0, 0, 0, 0))
|
|
|
|
self.assertEqual(im.getcolors(), [(100, (0, 0, 0, 0))])
|
|
|
|
|
|
|
|
im = im.convert("P")
|
2015-04-24 11:24:52 +03:00
|
|
|
test_file = self.tempfile("temp.png")
|
|
|
|
im.save(test_file)
|
2013-03-26 14:24:07 +04:00
|
|
|
|
2016-04-19 10:31:15 +03:00
|
|
|
# check if saved image contains same transparency
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open(test_file) as im:
|
|
|
|
self.assertEqual(len(im.info["transparency"]), 256)
|
|
|
|
self.assert_image(im, "P", (10, 10))
|
|
|
|
im = im.convert("RGBA")
|
2016-04-19 10:31:15 +03:00
|
|
|
self.assert_image(im, "RGBA", (10, 10))
|
|
|
|
self.assertEqual(im.getcolors(), [(100, (0, 0, 0, 0))])
|
|
|
|
|
2019-03-26 23:41:33 +03:00
|
|
|
def test_save_greyscale_transparency(self):
|
2019-06-13 18:54:11 +03:00
|
|
|
for mode, num_transparent in {"1": 1994, "L": 559, "I": 559}.items():
|
|
|
|
in_file = "Tests/images/" + mode.lower() + "_trns.png"
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open(in_file) as im:
|
|
|
|
self.assertEqual(im.mode, mode)
|
|
|
|
self.assertEqual(im.info["transparency"], 255)
|
2019-03-26 23:41:33 +03:00
|
|
|
|
2019-11-25 23:03:23 +03:00
|
|
|
im_rgba = im.convert("RGBA")
|
2019-06-13 18:54:11 +03:00
|
|
|
self.assertEqual(im_rgba.getchannel("A").getcolors()[0][0], num_transparent)
|
2019-03-26 23:41:33 +03:00
|
|
|
|
|
|
|
test_file = self.tempfile("temp.png")
|
|
|
|
im.save(test_file)
|
2013-03-26 14:24:07 +04:00
|
|
|
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open(test_file) as test_im:
|
|
|
|
self.assertEqual(test_im.mode, mode)
|
|
|
|
self.assertEqual(test_im.info["transparency"], 255)
|
|
|
|
self.assert_image_equal(im, test_im)
|
2018-06-14 12:20:04 +03:00
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
test_im_rgba = test_im.convert("RGBA")
|
2019-03-26 23:41:33 +03:00
|
|
|
self.assertEqual(
|
2019-06-13 18:54:11 +03:00
|
|
|
test_im_rgba.getchannel("A").getcolors()[0][0], num_transparent
|
|
|
|
)
|
2013-03-26 14:24:07 +04:00
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
def test_save_rgb_single_transparency(self):
|
|
|
|
in_file = "Tests/images/caption_6_33_22.png"
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open(in_file) as im:
|
|
|
|
test_file = self.tempfile("temp.png")
|
|
|
|
im.save(test_file)
|
2013-03-26 14:24:07 +04:00
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
def test_load_verify(self):
|
|
|
|
# Check open/load/verify exception (@PIL150)
|
2013-03-26 14:24:07 +04:00
|
|
|
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open(TEST_PNG_FILE) as im:
|
|
|
|
# Assert that there is no unclosed file warning
|
|
|
|
self.assert_warning(None, im.verify)
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open(TEST_PNG_FILE) as im:
|
|
|
|
im.load()
|
|
|
|
self.assertRaises(RuntimeError, im.verify)
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2016-04-04 13:08:22 +03:00
|
|
|
def test_verify_struct_error(self):
|
|
|
|
# Check open/load/verify exception (#1755)
|
|
|
|
|
2016-04-04 15:40:37 +03:00
|
|
|
# offsets to test, -10: breaks in i32() in read. (IOError)
|
2016-04-04 13:08:22 +03:00
|
|
|
# -13: breaks in crc, txt chunk.
|
|
|
|
# -14: malformed chunk
|
|
|
|
|
|
|
|
for offset in (-10, -13, -14):
|
2019-06-13 18:54:11 +03:00
|
|
|
with open(TEST_PNG_FILE, "rb") as f:
|
2016-04-04 13:08:22 +03:00
|
|
|
test_file = f.read()[:offset]
|
|
|
|
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open(BytesIO(test_file)) as im:
|
|
|
|
self.assertIsNotNone(im.fp)
|
|
|
|
self.assertRaises((IOError, SyntaxError), im.verify)
|
2016-04-04 13:08:22 +03:00
|
|
|
|
2016-06-29 22:24:37 +03:00
|
|
|
def test_verify_ignores_crc_error(self):
|
|
|
|
# check ignores crc errors in ancillary chunks
|
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
chunk_data = chunk(b"tEXt", b"spam")
|
|
|
|
broken_crc_chunk_data = chunk_data[:-1] + b"q" # break CRC
|
2016-06-29 22:24:37 +03:00
|
|
|
|
|
|
|
image_data = HEAD + broken_crc_chunk_data + TAIL
|
2019-06-13 18:54:11 +03:00
|
|
|
self.assertRaises(SyntaxError, PngImagePlugin.PngImageFile, BytesIO(image_data))
|
2016-06-29 22:24:37 +03:00
|
|
|
|
|
|
|
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
|
|
|
try:
|
|
|
|
im = load(image_data)
|
2017-06-03 07:04:54 +03:00
|
|
|
self.assertIsNotNone(im)
|
2016-06-29 22:24:37 +03:00
|
|
|
finally:
|
|
|
|
ImageFile.LOAD_TRUNCATED_IMAGES = False
|
|
|
|
|
|
|
|
def test_verify_not_ignores_crc_error_in_required_chunk(self):
|
|
|
|
# check does not ignore crc errors in required chunks
|
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
image_data = MAGIC + IHDR[:-1] + b"q" + TAIL
|
2016-06-29 22:24:37 +03:00
|
|
|
|
|
|
|
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
|
|
|
try:
|
2019-06-13 18:54:11 +03:00
|
|
|
self.assertRaises(
|
|
|
|
SyntaxError, PngImagePlugin.PngImageFile, BytesIO(image_data)
|
|
|
|
)
|
2016-06-29 22:24:37 +03:00
|
|
|
finally:
|
|
|
|
ImageFile.LOAD_TRUNCATED_IMAGES = False
|
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
def test_roundtrip_dpi(self):
|
|
|
|
# Check dpi roundtripping
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open(TEST_PNG_FILE) as im:
|
|
|
|
im = roundtrip(im, dpi=(100, 100))
|
2014-06-10 13:10:47 +04:00
|
|
|
self.assertEqual(im.info["dpi"], (100, 100))
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2019-03-30 07:03:57 +03:00
|
|
|
def test_load_dpi_rounding(self):
|
|
|
|
# Round up
|
Improve handling of file resources
Follow Python's file object semantics. User code is responsible for
closing resources (usually through a context manager) in a deterministic
way.
To achieve this, remove __del__ functions. These functions used to
closed open file handlers in an attempt to silence Python
ResourceWarnings. However, using __del__ has the following drawbacks:
- __del__ isn't called until the object's reference count reaches 0.
Therefore, resource handlers remain open or in use longer than
necessary.
- The __del__ method isn't guaranteed to execute on system exit. See the
Python documentation:
https://docs.python.org/3/reference/datamodel.html#object.__del__
> It is not guaranteed that __del__() methods are called for objects
> that still exist when the interpreter exits.
- Exceptions that occur inside __del__ are ignored instead of raised.
This has the potential of hiding bugs. This is also in the Python
documentation:
> Warning: Due to the precarious circumstances under which __del__()
> methods are invoked, exceptions that occur during their execution
> are ignored, and a warning is printed to sys.stderr instead.
Instead, always close resource handlers when they are no longer in use.
This will close the file handler at a specified point in the user's code
and not wait until the interpreter chooses to. It is always guaranteed
to run. And, if an exception occurs while closing the file handler, the
bug will not be ignored.
Now, when code receives a ResourceWarning, it will highlight an area
that is mishandling resources. It should not simply be silenced, but
fixed by closing resources with a context manager.
All warnings that were emitted during tests have been cleaned up. To
enable warnings, I passed the `-Wa` CLI option to Python. This exposed
some mishandling of resources in ImageFile.__init__() and
SpiderImagePlugin.loadImageSeries(), they too were fixed.
2019-05-25 19:30:58 +03:00
|
|
|
with Image.open(TEST_PNG_FILE) as im:
|
|
|
|
self.assertEqual(im.info["dpi"], (96, 96))
|
2019-03-30 07:03:57 +03:00
|
|
|
|
|
|
|
# Round down
|
Improve handling of file resources
Follow Python's file object semantics. User code is responsible for
closing resources (usually through a context manager) in a deterministic
way.
To achieve this, remove __del__ functions. These functions used to
closed open file handlers in an attempt to silence Python
ResourceWarnings. However, using __del__ has the following drawbacks:
- __del__ isn't called until the object's reference count reaches 0.
Therefore, resource handlers remain open or in use longer than
necessary.
- The __del__ method isn't guaranteed to execute on system exit. See the
Python documentation:
https://docs.python.org/3/reference/datamodel.html#object.__del__
> It is not guaranteed that __del__() methods are called for objects
> that still exist when the interpreter exits.
- Exceptions that occur inside __del__ are ignored instead of raised.
This has the potential of hiding bugs. This is also in the Python
documentation:
> Warning: Due to the precarious circumstances under which __del__()
> methods are invoked, exceptions that occur during their execution
> are ignored, and a warning is printed to sys.stderr instead.
Instead, always close resource handlers when they are no longer in use.
This will close the file handler at a specified point in the user's code
and not wait until the interpreter chooses to. It is always guaranteed
to run. And, if an exception occurs while closing the file handler, the
bug will not be ignored.
Now, when code receives a ResourceWarning, it will highlight an area
that is mishandling resources. It should not simply be silenced, but
fixed by closing resources with a context manager.
All warnings that were emitted during tests have been cleaned up. To
enable warnings, I passed the `-Wa` CLI option to Python. This exposed
some mishandling of resources in ImageFile.__init__() and
SpiderImagePlugin.loadImageSeries(), they too were fixed.
2019-05-25 19:30:58 +03:00
|
|
|
with Image.open("Tests/images/icc_profile_none.png") as im:
|
|
|
|
self.assertEqual(im.info["dpi"], (72, 72))
|
2019-03-30 07:03:57 +03:00
|
|
|
|
|
|
|
def test_save_dpi_rounding(self):
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open(TEST_PNG_FILE) as im:
|
|
|
|
im = roundtrip(im, dpi=(72.2, 72.2))
|
2019-03-30 07:03:57 +03:00
|
|
|
self.assertEqual(im.info["dpi"], (72, 72))
|
|
|
|
|
|
|
|
im = roundtrip(im, dpi=(72.8, 72.8))
|
|
|
|
self.assertEqual(im.info["dpi"], (73, 73))
|
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
def test_roundtrip_text(self):
|
|
|
|
# Check text roundtripping
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open(TEST_PNG_FILE) as im:
|
|
|
|
info = PngImagePlugin.PngInfo()
|
|
|
|
info.add_text("TXT", "VALUE")
|
|
|
|
info.add_text("ZIP", "VALUE", zip=True)
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2019-11-25 23:03:23 +03:00
|
|
|
im = roundtrip(im, pnginfo=info)
|
2019-06-13 18:54:11 +03:00
|
|
|
self.assertEqual(im.info, {"TXT": "VALUE", "ZIP": "VALUE"})
|
|
|
|
self.assertEqual(im.text, {"TXT": "VALUE", "ZIP": "VALUE"})
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2014-07-23 18:27:51 +04:00
|
|
|
def test_roundtrip_itxt(self):
|
|
|
|
# Check iTXt roundtripping
|
|
|
|
|
|
|
|
im = Image.new("RGB", (32, 32))
|
|
|
|
info = PngImagePlugin.PngInfo()
|
|
|
|
info.add_itxt("spam", "Eggs", "en", "Spam")
|
2019-06-13 18:54:11 +03:00
|
|
|
info.add_text("eggs", PngImagePlugin.iTXt("Spam", "en", "Eggs"), zip=True)
|
2014-07-23 18:27:51 +04:00
|
|
|
|
|
|
|
im = roundtrip(im, pnginfo=info)
|
|
|
|
self.assertEqual(im.info, {"spam": "Eggs", "eggs": "Spam"})
|
|
|
|
self.assertEqual(im.text, {"spam": "Eggs", "eggs": "Spam"})
|
|
|
|
self.assertEqual(im.text["spam"].lang, "en")
|
|
|
|
self.assertEqual(im.text["spam"].tkey, "Spam")
|
|
|
|
self.assertEqual(im.text["eggs"].lang, "en")
|
|
|
|
self.assertEqual(im.text["eggs"].tkey, "Eggs")
|
|
|
|
|
2014-07-23 19:17:11 +04:00
|
|
|
def test_nonunicode_text(self):
|
|
|
|
# Check so that non-Unicode text is saved as a tEXt rather than iTXt
|
|
|
|
|
|
|
|
im = Image.new("RGB", (32, 32))
|
|
|
|
info = PngImagePlugin.PngInfo()
|
|
|
|
info.add_text("Text", "Ascii")
|
|
|
|
im = roundtrip(im, pnginfo=info)
|
2016-10-31 03:43:32 +03:00
|
|
|
self.assertIsInstance(im.info["Text"], str)
|
2014-07-23 19:17:11 +04:00
|
|
|
|
|
|
|
def test_unicode_text(self):
|
2019-10-07 15:34:12 +03:00
|
|
|
# Check preservation of non-ASCII characters
|
2014-07-23 19:17:11 +04:00
|
|
|
|
|
|
|
def rt_text(value):
|
|
|
|
im = Image.new("RGB", (32, 32))
|
|
|
|
info = PngImagePlugin.PngInfo()
|
|
|
|
info.add_text("Text", value)
|
|
|
|
im = roundtrip(im, pnginfo=info)
|
|
|
|
self.assertEqual(im.info, {"Text": value})
|
|
|
|
|
2019-09-26 15:12:28 +03:00
|
|
|
rt_text(" Aa" + chr(0xA0) + chr(0xC4) + chr(0xFF)) # Latin1
|
|
|
|
rt_text(chr(0x400) + chr(0x472) + chr(0x4FF)) # Cyrillic
|
|
|
|
# CJK:
|
|
|
|
rt_text(chr(0x4E00) + chr(0x66F0) + chr(0x9FBA) + chr(0x3042) + chr(0xAC00))
|
|
|
|
rt_text("A" + chr(0xC4) + chr(0x472) + chr(0x3042)) # Combined
|
2014-07-23 19:17:11 +04:00
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
def test_scary(self):
|
|
|
|
# Check reading of evil PNG file. For information, see:
|
|
|
|
# http://scary.beasts.org/security/CESA-2004-001.txt
|
|
|
|
# The first byte is removed from pngtest_bad.png
|
|
|
|
# to avoid classification as malware.
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
with open("Tests/images/pngtest_bad.png.bin", "rb") as fd:
|
|
|
|
data = b"\x89" + fd.read()
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
pngfile = BytesIO(data)
|
2017-09-01 14:05:40 +03:00
|
|
|
self.assertRaises(IOError, Image.open, pngfile)
|
2012-10-15 09:55:39 +04:00
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
def test_trns_rgb(self):
|
|
|
|
# Check writing and reading of tRNS chunks for RGB images.
|
|
|
|
# Independent file sample provided by Sebastian Spaeth.
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2015-04-24 11:24:52 +03:00
|
|
|
test_file = "Tests/images/caption_6_33_22.png"
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open(test_file) as im:
|
|
|
|
self.assertEqual(im.info["transparency"], (248, 248, 248))
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2019-11-25 23:03:23 +03:00
|
|
|
# check saving transparency by default
|
|
|
|
im = roundtrip(im)
|
2014-06-10 13:10:47 +04:00
|
|
|
self.assertEqual(im.info["transparency"], (248, 248, 248))
|
2012-10-16 00:26:38 +04:00
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
im = roundtrip(im, transparency=(0, 1, 2))
|
|
|
|
self.assertEqual(im.info["transparency"], (0, 1, 2))
|
2013-11-27 02:59:03 +04:00
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
def test_trns_p(self):
|
|
|
|
# Check writing a transparency of 0, issue #528
|
2019-06-13 18:54:11 +03:00
|
|
|
im = hopper("P")
|
|
|
|
im.info["transparency"] = 0
|
2014-01-19 19:40:39 +04:00
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
f = self.tempfile("temp.png")
|
|
|
|
im.save(f)
|
2014-06-03 14:02:44 +04:00
|
|
|
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open(f) as im2:
|
|
|
|
self.assertIn("transparency", im2.info)
|
2014-03-01 04:29:34 +04:00
|
|
|
|
2019-11-25 23:03:23 +03:00
|
|
|
self.assert_image_equal(im2.convert("RGBA"), im.convert("RGBA"))
|
2014-03-01 04:29:34 +04:00
|
|
|
|
2015-05-27 18:45:27 +03:00
|
|
|
def test_trns_null(self):
|
|
|
|
# Check reading images with null tRNS value, issue #1239
|
|
|
|
test_file = "Tests/images/tRNS_null_1x1.png"
|
Improve handling of file resources
Follow Python's file object semantics. User code is responsible for
closing resources (usually through a context manager) in a deterministic
way.
To achieve this, remove __del__ functions. These functions used to
closed open file handlers in an attempt to silence Python
ResourceWarnings. However, using __del__ has the following drawbacks:
- __del__ isn't called until the object's reference count reaches 0.
Therefore, resource handlers remain open or in use longer than
necessary.
- The __del__ method isn't guaranteed to execute on system exit. See the
Python documentation:
https://docs.python.org/3/reference/datamodel.html#object.__del__
> It is not guaranteed that __del__() methods are called for objects
> that still exist when the interpreter exits.
- Exceptions that occur inside __del__ are ignored instead of raised.
This has the potential of hiding bugs. This is also in the Python
documentation:
> Warning: Due to the precarious circumstances under which __del__()
> methods are invoked, exceptions that occur during their execution
> are ignored, and a warning is printed to sys.stderr instead.
Instead, always close resource handlers when they are no longer in use.
This will close the file handler at a specified point in the user's code
and not wait until the interpreter chooses to. It is always guaranteed
to run. And, if an exception occurs while closing the file handler, the
bug will not be ignored.
Now, when code receives a ResourceWarning, it will highlight an area
that is mishandling resources. It should not simply be silenced, but
fixed by closing resources with a context manager.
All warnings that were emitted during tests have been cleaned up. To
enable warnings, I passed the `-Wa` CLI option to Python. This exposed
some mishandling of resources in ImageFile.__init__() and
SpiderImagePlugin.loadImageSeries(), they too were fixed.
2019-05-25 19:30:58 +03:00
|
|
|
with Image.open(test_file) as im:
|
2015-05-27 18:45:27 +03:00
|
|
|
|
Improve handling of file resources
Follow Python's file object semantics. User code is responsible for
closing resources (usually through a context manager) in a deterministic
way.
To achieve this, remove __del__ functions. These functions used to
closed open file handlers in an attempt to silence Python
ResourceWarnings. However, using __del__ has the following drawbacks:
- __del__ isn't called until the object's reference count reaches 0.
Therefore, resource handlers remain open or in use longer than
necessary.
- The __del__ method isn't guaranteed to execute on system exit. See the
Python documentation:
https://docs.python.org/3/reference/datamodel.html#object.__del__
> It is not guaranteed that __del__() methods are called for objects
> that still exist when the interpreter exits.
- Exceptions that occur inside __del__ are ignored instead of raised.
This has the potential of hiding bugs. This is also in the Python
documentation:
> Warning: Due to the precarious circumstances under which __del__()
> methods are invoked, exceptions that occur during their execution
> are ignored, and a warning is printed to sys.stderr instead.
Instead, always close resource handlers when they are no longer in use.
This will close the file handler at a specified point in the user's code
and not wait until the interpreter chooses to. It is always guaranteed
to run. And, if an exception occurs while closing the file handler, the
bug will not be ignored.
Now, when code receives a ResourceWarning, it will highlight an area
that is mishandling resources. It should not simply be silenced, but
fixed by closing resources with a context manager.
All warnings that were emitted during tests have been cleaned up. To
enable warnings, I passed the `-Wa` CLI option to Python. This exposed
some mishandling of resources in ImageFile.__init__() and
SpiderImagePlugin.loadImageSeries(), they too were fixed.
2019-05-25 19:30:58 +03:00
|
|
|
self.assertEqual(im.info["transparency"], 0)
|
2015-05-27 18:45:27 +03:00
|
|
|
|
2016-05-12 20:28:58 +03:00
|
|
|
def test_save_icc_profile(self):
|
Improve handling of file resources
Follow Python's file object semantics. User code is responsible for
closing resources (usually through a context manager) in a deterministic
way.
To achieve this, remove __del__ functions. These functions used to
closed open file handlers in an attempt to silence Python
ResourceWarnings. However, using __del__ has the following drawbacks:
- __del__ isn't called until the object's reference count reaches 0.
Therefore, resource handlers remain open or in use longer than
necessary.
- The __del__ method isn't guaranteed to execute on system exit. See the
Python documentation:
https://docs.python.org/3/reference/datamodel.html#object.__del__
> It is not guaranteed that __del__() methods are called for objects
> that still exist when the interpreter exits.
- Exceptions that occur inside __del__ are ignored instead of raised.
This has the potential of hiding bugs. This is also in the Python
documentation:
> Warning: Due to the precarious circumstances under which __del__()
> methods are invoked, exceptions that occur during their execution
> are ignored, and a warning is printed to sys.stderr instead.
Instead, always close resource handlers when they are no longer in use.
This will close the file handler at a specified point in the user's code
and not wait until the interpreter chooses to. It is always guaranteed
to run. And, if an exception occurs while closing the file handler, the
bug will not be ignored.
Now, when code receives a ResourceWarning, it will highlight an area
that is mishandling resources. It should not simply be silenced, but
fixed by closing resources with a context manager.
All warnings that were emitted during tests have been cleaned up. To
enable warnings, I passed the `-Wa` CLI option to Python. This exposed
some mishandling of resources in ImageFile.__init__() and
SpiderImagePlugin.loadImageSeries(), they too were fixed.
2019-05-25 19:30:58 +03:00
|
|
|
with Image.open("Tests/images/icc_profile_none.png") as im:
|
|
|
|
self.assertIsNone(im.info["icc_profile"])
|
2014-06-03 14:02:44 +04:00
|
|
|
|
Improve handling of file resources
Follow Python's file object semantics. User code is responsible for
closing resources (usually through a context manager) in a deterministic
way.
To achieve this, remove __del__ functions. These functions used to
closed open file handlers in an attempt to silence Python
ResourceWarnings. However, using __del__ has the following drawbacks:
- __del__ isn't called until the object's reference count reaches 0.
Therefore, resource handlers remain open or in use longer than
necessary.
- The __del__ method isn't guaranteed to execute on system exit. See the
Python documentation:
https://docs.python.org/3/reference/datamodel.html#object.__del__
> It is not guaranteed that __del__() methods are called for objects
> that still exist when the interpreter exits.
- Exceptions that occur inside __del__ are ignored instead of raised.
This has the potential of hiding bugs. This is also in the Python
documentation:
> Warning: Due to the precarious circumstances under which __del__()
> methods are invoked, exceptions that occur during their execution
> are ignored, and a warning is printed to sys.stderr instead.
Instead, always close resource handlers when they are no longer in use.
This will close the file handler at a specified point in the user's code
and not wait until the interpreter chooses to. It is always guaranteed
to run. And, if an exception occurs while closing the file handler, the
bug will not be ignored.
Now, when code receives a ResourceWarning, it will highlight an area
that is mishandling resources. It should not simply be silenced, but
fixed by closing resources with a context manager.
All warnings that were emitted during tests have been cleaned up. To
enable warnings, I passed the `-Wa` CLI option to Python. This exposed
some mishandling of resources in ImageFile.__init__() and
SpiderImagePlugin.loadImageSeries(), they too were fixed.
2019-05-25 19:30:58 +03:00
|
|
|
with Image.open("Tests/images/icc_profile.png") as with_icc:
|
|
|
|
expected_icc = with_icc.info["icc_profile"]
|
2016-05-12 20:28:58 +03:00
|
|
|
|
Improve handling of file resources
Follow Python's file object semantics. User code is responsible for
closing resources (usually through a context manager) in a deterministic
way.
To achieve this, remove __del__ functions. These functions used to
closed open file handlers in an attempt to silence Python
ResourceWarnings. However, using __del__ has the following drawbacks:
- __del__ isn't called until the object's reference count reaches 0.
Therefore, resource handlers remain open or in use longer than
necessary.
- The __del__ method isn't guaranteed to execute on system exit. See the
Python documentation:
https://docs.python.org/3/reference/datamodel.html#object.__del__
> It is not guaranteed that __del__() methods are called for objects
> that still exist when the interpreter exits.
- Exceptions that occur inside __del__ are ignored instead of raised.
This has the potential of hiding bugs. This is also in the Python
documentation:
> Warning: Due to the precarious circumstances under which __del__()
> methods are invoked, exceptions that occur during their execution
> are ignored, and a warning is printed to sys.stderr instead.
Instead, always close resource handlers when they are no longer in use.
This will close the file handler at a specified point in the user's code
and not wait until the interpreter chooses to. It is always guaranteed
to run. And, if an exception occurs while closing the file handler, the
bug will not be ignored.
Now, when code receives a ResourceWarning, it will highlight an area
that is mishandling resources. It should not simply be silenced, but
fixed by closing resources with a context manager.
All warnings that were emitted during tests have been cleaned up. To
enable warnings, I passed the `-Wa` CLI option to Python. This exposed
some mishandling of resources in ImageFile.__init__() and
SpiderImagePlugin.loadImageSeries(), they too were fixed.
2019-05-25 19:30:58 +03:00
|
|
|
im = roundtrip(im, icc_profile=expected_icc)
|
|
|
|
self.assertEqual(im.info["icc_profile"], expected_icc)
|
2016-05-12 20:28:58 +03:00
|
|
|
|
|
|
|
def test_discard_icc_profile(self):
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open("Tests/images/icc_profile.png") as im:
|
|
|
|
im = roundtrip(im, icc_profile=None)
|
2019-06-13 18:54:11 +03:00
|
|
|
self.assertNotIn("icc_profile", im.info)
|
2014-06-03 14:02:44 +04:00
|
|
|
|
2014-06-10 13:10:47 +04:00
|
|
|
def test_roundtrip_icc_profile(self):
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open("Tests/images/icc_profile.png") as im:
|
|
|
|
expected_icc = im.info["icc_profile"]
|
2014-01-19 19:40:39 +04:00
|
|
|
|
2019-11-25 23:03:23 +03:00
|
|
|
im = roundtrip(im)
|
2019-06-13 18:54:11 +03:00
|
|
|
self.assertEqual(im.info["icc_profile"], expected_icc)
|
2014-01-19 22:09:40 +04:00
|
|
|
|
2016-05-12 20:28:58 +03:00
|
|
|
def test_roundtrip_no_icc_profile(self):
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open("Tests/images/icc_profile_none.png") as im:
|
|
|
|
self.assertIsNone(im.info["icc_profile"])
|
2016-05-12 20:28:58 +03:00
|
|
|
|
2019-11-25 23:03:23 +03:00
|
|
|
im = roundtrip(im)
|
2019-06-13 18:54:11 +03:00
|
|
|
self.assertNotIn("icc_profile", im.info)
|
2016-05-12 20:28:58 +03:00
|
|
|
|
2015-01-28 20:35:31 +03:00
|
|
|
def test_repr_png(self):
|
|
|
|
im = hopper()
|
|
|
|
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open(BytesIO(im._repr_png_())) as repr_png:
|
|
|
|
self.assertEqual(repr_png.format, "PNG")
|
|
|
|
self.assert_image_equal(im, repr_png)
|
2015-01-28 20:35:31 +03:00
|
|
|
|
2017-01-15 09:36:59 +03:00
|
|
|
def test_chunk_order(self):
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open("Tests/images/icc_profile.png") as im:
|
|
|
|
test_file = self.tempfile("temp.png")
|
|
|
|
im.convert("P").save(test_file, dpi=(100, 100))
|
2017-01-15 09:36:59 +03:00
|
|
|
|
2017-12-20 13:27:13 +03:00
|
|
|
chunks = self.get_chunks(test_file)
|
2017-01-21 06:47:59 +03:00
|
|
|
|
|
|
|
# https://www.w3.org/TR/PNG/#5ChunkOrdering
|
|
|
|
# IHDR - shall be first
|
|
|
|
self.assertEqual(chunks.index(b"IHDR"), 0)
|
|
|
|
# PLTE - before first IDAT
|
|
|
|
self.assertLess(chunks.index(b"PLTE"), chunks.index(b"IDAT"))
|
|
|
|
# iCCP - before PLTE and IDAT
|
2017-01-15 09:36:59 +03:00
|
|
|
self.assertLess(chunks.index(b"iCCP"), chunks.index(b"PLTE"))
|
2017-01-21 06:47:59 +03:00
|
|
|
self.assertLess(chunks.index(b"iCCP"), chunks.index(b"IDAT"))
|
|
|
|
# tRNS - after PLTE, before IDAT
|
|
|
|
self.assertGreater(chunks.index(b"tRNS"), chunks.index(b"PLTE"))
|
|
|
|
self.assertLess(chunks.index(b"tRNS"), chunks.index(b"IDAT"))
|
|
|
|
# pHYs - before IDAT
|
|
|
|
self.assertLess(chunks.index(b"pHYs"), chunks.index(b"IDAT"))
|
2017-01-15 09:36:59 +03:00
|
|
|
|
2017-09-01 13:36:51 +03:00
|
|
|
def test_getchunks(self):
|
|
|
|
im = hopper()
|
|
|
|
|
|
|
|
chunks = PngImagePlugin.getchunks(im)
|
|
|
|
self.assertEqual(len(chunks), 3)
|
|
|
|
|
2018-12-24 15:58:19 +03:00
|
|
|
def test_textual_chunks_after_idat(self):
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open("Tests/images/hopper.png") as im:
|
|
|
|
self.assertIn("comment", im.text.keys())
|
|
|
|
for k, v in {
|
|
|
|
"date:create": "2014-09-04T09:37:08+03:00",
|
|
|
|
"date:modify": "2014-09-04T09:37:08+03:00",
|
|
|
|
}.items():
|
|
|
|
self.assertEqual(im.text[k], v)
|
2018-12-24 15:58:19 +03:00
|
|
|
|
|
|
|
# Raises a SyntaxError in load_end
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open("Tests/images/broken_data_stream.png") as im:
|
|
|
|
with self.assertRaises(IOError):
|
|
|
|
self.assertIsInstance(im.text, dict)
|
2018-12-24 15:58:19 +03:00
|
|
|
|
|
|
|
# Raises a UnicodeDecodeError in load_end
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open("Tests/images/truncated_image.png") as im:
|
|
|
|
# The file is truncated
|
|
|
|
self.assertRaises(IOError, lambda: im.text)
|
|
|
|
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
|
|
|
self.assertIsInstance(im.text, dict)
|
|
|
|
ImageFile.LOAD_TRUNCATED_IMAGES = False
|
2018-12-24 15:58:19 +03:00
|
|
|
|
2019-01-03 11:13:19 +03:00
|
|
|
# Raises an EOFError in load_end
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open("Tests/images/hopper_idat_after_image_end.png") as im:
|
|
|
|
self.assertEqual(im.text, {"TXT": "VALUE", "ZIP": "VALUE"})
|
2019-01-03 11:13:19 +03:00
|
|
|
|
2019-02-23 05:30:38 +03:00
|
|
|
def test_exif(self):
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open("Tests/images/exif.png") as im:
|
|
|
|
exif = im._getexif()
|
2019-03-11 13:18:36 +03:00
|
|
|
self.assertEqual(exif[274], 1)
|
|
|
|
|
|
|
|
def test_exif_save(self):
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open("Tests/images/exif.png") as im:
|
|
|
|
test_file = self.tempfile("temp.png")
|
|
|
|
im.save(test_file)
|
2019-03-11 13:18:36 +03:00
|
|
|
|
Improve handling of file resources
Follow Python's file object semantics. User code is responsible for
closing resources (usually through a context manager) in a deterministic
way.
To achieve this, remove __del__ functions. These functions used to
closed open file handlers in an attempt to silence Python
ResourceWarnings. However, using __del__ has the following drawbacks:
- __del__ isn't called until the object's reference count reaches 0.
Therefore, resource handlers remain open or in use longer than
necessary.
- The __del__ method isn't guaranteed to execute on system exit. See the
Python documentation:
https://docs.python.org/3/reference/datamodel.html#object.__del__
> It is not guaranteed that __del__() methods are called for objects
> that still exist when the interpreter exits.
- Exceptions that occur inside __del__ are ignored instead of raised.
This has the potential of hiding bugs. This is also in the Python
documentation:
> Warning: Due to the precarious circumstances under which __del__()
> methods are invoked, exceptions that occur during their execution
> are ignored, and a warning is printed to sys.stderr instead.
Instead, always close resource handlers when they are no longer in use.
This will close the file handler at a specified point in the user's code
and not wait until the interpreter chooses to. It is always guaranteed
to run. And, if an exception occurs while closing the file handler, the
bug will not be ignored.
Now, when code receives a ResourceWarning, it will highlight an area
that is mishandling resources. It should not simply be silenced, but
fixed by closing resources with a context manager.
All warnings that were emitted during tests have been cleaned up. To
enable warnings, I passed the `-Wa` CLI option to Python. This exposed
some mishandling of resources in ImageFile.__init__() and
SpiderImagePlugin.loadImageSeries(), they too were fixed.
2019-05-25 19:30:58 +03:00
|
|
|
with Image.open(test_file) as reloaded:
|
|
|
|
exif = reloaded._getexif()
|
2019-03-11 13:18:36 +03:00
|
|
|
self.assertEqual(exif[274], 1)
|
|
|
|
|
|
|
|
def test_exif_from_jpg(self):
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open("Tests/images/pil_sample_rgb.jpg") as im:
|
|
|
|
test_file = self.tempfile("temp.png")
|
|
|
|
im.save(test_file)
|
2019-02-23 05:30:38 +03:00
|
|
|
|
Improve handling of file resources
Follow Python's file object semantics. User code is responsible for
closing resources (usually through a context manager) in a deterministic
way.
To achieve this, remove __del__ functions. These functions used to
closed open file handlers in an attempt to silence Python
ResourceWarnings. However, using __del__ has the following drawbacks:
- __del__ isn't called until the object's reference count reaches 0.
Therefore, resource handlers remain open or in use longer than
necessary.
- The __del__ method isn't guaranteed to execute on system exit. See the
Python documentation:
https://docs.python.org/3/reference/datamodel.html#object.__del__
> It is not guaranteed that __del__() methods are called for objects
> that still exist when the interpreter exits.
- Exceptions that occur inside __del__ are ignored instead of raised.
This has the potential of hiding bugs. This is also in the Python
documentation:
> Warning: Due to the precarious circumstances under which __del__()
> methods are invoked, exceptions that occur during their execution
> are ignored, and a warning is printed to sys.stderr instead.
Instead, always close resource handlers when they are no longer in use.
This will close the file handler at a specified point in the user's code
and not wait until the interpreter chooses to. It is always guaranteed
to run. And, if an exception occurs while closing the file handler, the
bug will not be ignored.
Now, when code receives a ResourceWarning, it will highlight an area
that is mishandling resources. It should not simply be silenced, but
fixed by closing resources with a context manager.
All warnings that were emitted during tests have been cleaned up. To
enable warnings, I passed the `-Wa` CLI option to Python. This exposed
some mishandling of resources in ImageFile.__init__() and
SpiderImagePlugin.loadImageSeries(), they too were fixed.
2019-05-25 19:30:58 +03:00
|
|
|
with Image.open(test_file) as reloaded:
|
|
|
|
exif = reloaded._getexif()
|
2019-02-23 05:30:38 +03:00
|
|
|
self.assertEqual(exif[305], "Adobe Photoshop CS Macintosh")
|
|
|
|
|
|
|
|
def test_exif_argument(self):
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open(TEST_PNG_FILE) as im:
|
|
|
|
test_file = self.tempfile("temp.png")
|
|
|
|
im.save(test_file, exif=b"exifstring")
|
2019-02-23 05:30:38 +03:00
|
|
|
|
Improve handling of file resources
Follow Python's file object semantics. User code is responsible for
closing resources (usually through a context manager) in a deterministic
way.
To achieve this, remove __del__ functions. These functions used to
closed open file handlers in an attempt to silence Python
ResourceWarnings. However, using __del__ has the following drawbacks:
- __del__ isn't called until the object's reference count reaches 0.
Therefore, resource handlers remain open or in use longer than
necessary.
- The __del__ method isn't guaranteed to execute on system exit. See the
Python documentation:
https://docs.python.org/3/reference/datamodel.html#object.__del__
> It is not guaranteed that __del__() methods are called for objects
> that still exist when the interpreter exits.
- Exceptions that occur inside __del__ are ignored instead of raised.
This has the potential of hiding bugs. This is also in the Python
documentation:
> Warning: Due to the precarious circumstances under which __del__()
> methods are invoked, exceptions that occur during their execution
> are ignored, and a warning is printed to sys.stderr instead.
Instead, always close resource handlers when they are no longer in use.
This will close the file handler at a specified point in the user's code
and not wait until the interpreter chooses to. It is always guaranteed
to run. And, if an exception occurs while closing the file handler, the
bug will not be ignored.
Now, when code receives a ResourceWarning, it will highlight an area
that is mishandling resources. It should not simply be silenced, but
fixed by closing resources with a context manager.
All warnings that were emitted during tests have been cleaned up. To
enable warnings, I passed the `-Wa` CLI option to Python. This exposed
some mishandling of resources in ImageFile.__init__() and
SpiderImagePlugin.loadImageSeries(), they too were fixed.
2019-05-25 19:30:58 +03:00
|
|
|
with Image.open(test_file) as reloaded:
|
|
|
|
self.assertEqual(reloaded.info["exif"], b"Exif\x00\x00exifstring")
|
2019-02-23 05:30:38 +03:00
|
|
|
|
2019-06-13 18:54:11 +03:00
|
|
|
@unittest.skipUnless(
|
|
|
|
HAVE_WEBP and _webp.HAVE_WEBPANIM, "WebP support not installed with animation"
|
|
|
|
)
|
2018-12-27 04:19:44 +03:00
|
|
|
def test_apng(self):
|
2019-11-25 23:03:23 +03:00
|
|
|
with Image.open("Tests/images/iss634.apng") as im:
|
|
|
|
self.assertEqual(im.get_format_mimetype(), "image/apng")
|
2019-01-02 06:13:10 +03:00
|
|
|
|
2019-11-25 23:03:23 +03:00
|
|
|
# This also tests reading unknown PNG chunks (fcTL and fdAT) in load_end
|
|
|
|
with Image.open("Tests/images/iss634.webp") as expected:
|
|
|
|
self.assert_image_similar(im, expected, 0.23)
|
2018-12-27 04:19:44 +03:00
|
|
|
|
2014-01-22 08:50:54 +04:00
|
|
|
|
2019-09-25 12:46:54 +03:00
|
|
|
@unittest.skipIf(is_win32(), "requires Unix or macOS")
|
2017-09-04 12:44:57 +03:00
|
|
|
class TestTruncatedPngPLeaks(PillowLeakTestCase):
|
2019-06-13 18:54:11 +03:00
|
|
|
mem_limit = 2 * 1024 # max increase in K
|
2018-03-04 06:24:36 +03:00
|
|
|
iterations = 100 # Leak is 56k/iteration, this will leak 5.6megs
|
2017-06-21 13:31:32 +03:00
|
|
|
|
|
|
|
def setUp(self):
|
|
|
|
if "zip_encoder" not in codecs or "zip_decoder" not in codecs:
|
|
|
|
self.skipTest("zip/deflate support not available")
|
|
|
|
|
|
|
|
def test_leak_load(self):
|
2019-06-13 18:54:11 +03:00
|
|
|
with open("Tests/images/hopper.png", "rb") as f:
|
2017-06-21 13:31:32 +03:00
|
|
|
DATA = BytesIO(f.read(16 * 1024))
|
|
|
|
|
|
|
|
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
2017-06-27 23:20:46 +03:00
|
|
|
with Image.open(DATA) as im:
|
|
|
|
im.load()
|
2017-09-04 12:44:57 +03:00
|
|
|
|
|
|
|
def core():
|
|
|
|
with Image.open(DATA) as im:
|
|
|
|
im.load()
|
|
|
|
|
2017-06-21 13:31:32 +03:00
|
|
|
try:
|
2017-09-04 12:44:57 +03:00
|
|
|
self._test_leak(core)
|
2017-06-21 13:31:32 +03:00
|
|
|
finally:
|
|
|
|
ImageFile.LOAD_TRUNCATED_IMAGES = False
|