Pillow/src/libImaging/TiffDecode.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1089 lines
32 KiB
C
Raw Normal View History

/*
* The Python Imaging Library.
* $Id: //modules/pil/libImaging/TiffDecode.c#1 $
*
* LibTiff-based Group3 and Group4 decoder
*
*
* started modding to use non-private tiff functions to port to libtiff 4.x
* eds 3/12/12
*
*/
#include "Imaging.h"
2023-11-08 19:48:40 +03:00
#ifdef HAVE_LIBTIFF
#ifdef HAVE_UNISTD_H
#include <unistd.h> /* lseek */
#endif
#ifndef uint
#define uint uint32
#endif
#include "TiffDecode.h"
2020-08-30 05:30:47 +03:00
/* Convert C file descriptor to WinApi HFILE if LibTiff was compiled with tif_win32.c
*
* This cast is safe, as the top 32-bits of HFILE are guaranteed to be zero,
* see
2022-09-23 15:13:50 +03:00
* https://learn.microsoft.com/en-us/windows/win32/winprog64/interprocess-communication
2020-08-30 05:30:47 +03:00
*/
#ifndef USE_WIN32_FILEIO
#define fd_to_tiff_fd(fd) (fd)
#else
#define fd_to_tiff_fd(fd) ((int)_get_osfhandle(fd))
#endif
void
dump_state(const TIFFSTATE *state) {
2018-10-19 21:42:40 +03:00
TRACE(
("State: Location %u size %d eof %d data: %p ifd: %d\n",
(uint)state->loc,
(int)state->size,
(uint)state->eof,
state->data,
state->ifd)
);
}
/*
procs for TIFFOpenClient
*/
tsize_t
_tiffReadProc(thandle_t hdata, tdata_t buf, tsize_t size) {
2018-10-19 21:42:40 +03:00
TIFFSTATE *state = (TIFFSTATE *)hdata;
tsize_t to_read;
2018-10-19 21:42:40 +03:00
TRACE(("_tiffReadProc: %d \n", (int)size));
dump_state(state);
if (state->loc > state->eof) {
TIFFError(
"_tiffReadProc",
"Invalid Read at loc %" PRIu64 ", eof: %" PRIu64,
state->loc,
state->eof
);
return 0;
}
2018-10-19 21:42:40 +03:00
to_read = min(size, min(state->size, (tsize_t)state->eof) - (tsize_t)state->loc);
TRACE(("to_read: %d\n", (int)to_read));
2018-10-19 21:42:40 +03:00
_TIFFmemcpy(buf, (UINT8 *)state->data + state->loc, to_read);
state->loc += (toff_t)to_read;
2018-10-19 21:42:40 +03:00
TRACE(("location: %u\n", (uint)state->loc));
return to_read;
}
tsize_t
_tiffWriteProc(thandle_t hdata, tdata_t buf, tsize_t size) {
2018-10-19 21:42:40 +03:00
TIFFSTATE *state = (TIFFSTATE *)hdata;
tsize_t to_write;
2018-10-19 21:42:40 +03:00
TRACE(("_tiffWriteProc: %d \n", (int)size));
dump_state(state);
2018-10-19 21:42:40 +03:00
to_write = min(size, state->size - (tsize_t)state->loc);
if (state->flrealloc && size > to_write) {
tdata_t new_data;
tsize_t newsize = state->size;
while (newsize < (size + state->size)) {
2016-11-23 17:14:06 +03:00
if (newsize > INT_MAX - 64 * 1024) {
2016-03-16 19:01:25 +03:00
return 0;
}
2018-10-19 21:42:40 +03:00
newsize += 64 * 1024;
// newsize*=2; // UNDONE, by 64k chunks?
}
TRACE(("Reallocing in write to %d bytes\n", (int)newsize));
2016-03-16 19:01:25 +03:00
/* malloc check ok, overflow checked above */
2018-10-19 21:42:40 +03:00
new_data = realloc(state->data, newsize);
if (!new_data) {
// fail out
return 0;
}
state->data = new_data;
state->size = newsize;
to_write = size;
}
TRACE(("to_write: %d\n", (int)to_write));
_TIFFmemcpy((UINT8 *)state->data + state->loc, buf, to_write);
state->loc += (toff_t)to_write;
state->eof = max(state->loc, state->eof);
dump_state(state);
return to_write;
}
toff_t
_tiffSeekProc(thandle_t hdata, toff_t off, int whence) {
2018-10-19 21:42:40 +03:00
TIFFSTATE *state = (TIFFSTATE *)hdata;
TRACE(("_tiffSeekProc: off: %u whence: %d \n", (uint)off, whence));
dump_state(state);
switch (whence) {
case 0:
state->loc = off;
break;
case 1:
state->loc += off;
break;
case 2:
state->loc = state->eof + off;
break;
}
dump_state(state);
return state->loc;
}
int
_tiffCloseProc(thandle_t hdata) {
2018-10-19 21:42:40 +03:00
TIFFSTATE *state = (TIFFSTATE *)hdata;
2018-10-19 21:42:40 +03:00
TRACE(("_tiffCloseProc \n"));
dump_state(state);
2018-10-19 21:42:40 +03:00
return 0;
}
toff_t
_tiffSizeProc(thandle_t hdata) {
2018-10-19 21:42:40 +03:00
TIFFSTATE *state = (TIFFSTATE *)hdata;
2018-10-19 21:42:40 +03:00
TRACE(("_tiffSizeProc \n"));
dump_state(state);
2018-10-19 21:42:40 +03:00
return (toff_t)state->size;
}
int
_tiffMapProc(thandle_t hdata, tdata_t *pbase, toff_t *psize) {
2018-10-19 21:42:40 +03:00
TIFFSTATE *state = (TIFFSTATE *)hdata;
2018-10-19 21:42:40 +03:00
TRACE(("_tiffMapProc input size: %u, data: %p\n", (uint)*psize, *pbase));
dump_state(state);
2018-10-19 21:42:40 +03:00
*pbase = state->data;
*psize = state->size;
TRACE(("_tiffMapProc returning size: %u, data: %p\n", (uint)*psize, *pbase));
return (1);
}
int
_tiffNullMapProc(thandle_t hdata, tdata_t *pbase, toff_t *psize) {
2018-10-19 21:42:40 +03:00
(void)hdata;
(void)pbase;
(void)psize;
return (0);
}
void
_tiffUnmapProc(thandle_t hdata, tdata_t base, toff_t size) {
2018-10-19 21:42:40 +03:00
TRACE(("_tiffUnMapProc\n"));
(void)hdata;
(void)base;
(void)size;
}
int
ImagingLibTiffInit(ImagingCodecState state, int fp, uint32_t offset) {
2018-10-19 21:42:40 +03:00
TIFFSTATE *clientstate = (TIFFSTATE *)state->context;
TRACE(("initing libtiff\n"));
2018-10-19 21:42:40 +03:00
TRACE(("filepointer: %d \n", fp));
TRACE(
("State: count %d, state %d, x %d, y %d, ystep %d\n",
state->count,
state->state,
state->x,
state->y,
state->ystep)
);
2018-10-19 21:42:40 +03:00
TRACE(
("State: xsize %d, ysize %d, xoff %d, yoff %d \n",
state->xsize,
state->ysize,
state->xoff,
state->yoff)
);
2018-10-19 21:42:40 +03:00
TRACE(("State: bits %d, bytes %d \n", state->bits, state->bytes));
TRACE(("State: context %p \n", state->context));
clientstate->loc = 0;
clientstate->size = 0;
clientstate->data = 0;
clientstate->fp = fp;
clientstate->ifd = offset;
2018-10-19 21:42:40 +03:00
clientstate->eof = 0;
return 1;
}
int
_pickUnpackers(
Imaging im,
ImagingCodecState state,
TIFF *tiff,
uint16_t planarconfig,
ImagingShuffler *unpackers
) {
2021-01-14 05:33:49 +03:00
// if number of bands is 1, there is no difference with contig case
if (planarconfig == PLANARCONFIG_SEPARATE && im->bands > 1) {
uint16_t bits_per_sample = 8;
2021-01-14 05:33:49 +03:00
TIFFGetFieldDefaulted(tiff, TIFFTAG_BITSPERSAMPLE, &bits_per_sample);
if (bits_per_sample != 8 && bits_per_sample != 16) {
TRACE(("Invalid value for bits per sample: %d\n", bits_per_sample));
state->errcode = IMAGING_CODEC_BROKEN;
return -1;
}
// We'll pick appropriate set of unpackers depending on planar_configuration
// It does not matter if data is RGB(A), CMYK or LUV really,
// we just copy it plane by plane
unpackers[0] =
ImagingFindUnpacker("RGBA", bits_per_sample == 16 ? "R;16N" : "R", NULL);
unpackers[1] =
ImagingFindUnpacker("RGBA", bits_per_sample == 16 ? "G;16N" : "G", NULL);
unpackers[2] =
ImagingFindUnpacker("RGBA", bits_per_sample == 16 ? "B;16N" : "B", NULL);
unpackers[3] =
ImagingFindUnpacker("RGBA", bits_per_sample == 16 ? "A;16N" : "A", NULL);
2021-01-14 05:33:49 +03:00
return im->bands;
} else {
unpackers[0] = state->shuffle;
return 1;
}
}
int
_decodeAsRGBA(Imaging im, ImagingCodecState state, TIFF *tiff) {
// To avoid dealing with YCbCr subsampling and other complications, let libtiff
// handle it Use a TIFFRGBAImage wrapping the tiff image, and let libtiff handle all
// of the conversion. Metadata read from the TIFFRGBAImage could be different from
// the metadata that the base tiff returns.
2021-01-12 10:28:58 +03:00
INT32 current_row;
UINT8 *new_data;
2021-01-12 10:28:58 +03:00
UINT32 rows_per_block, row_byte_size, rows_to_read;
int ret;
TIFFRGBAImage img;
char emsg[1024] = "";
// Since using TIFFRGBAImage* functions, we can read whole tiff into rastrr in one
// call Let's select smaller block size. Multiplying image width by (tile length OR
// rows per strip) gives us manageable block size in pixels
2021-01-12 10:28:58 +03:00
if (TIFFIsTiled(tiff)) {
ret = TIFFGetFieldDefaulted(tiff, TIFFTAG_TILELENGTH, &rows_per_block);
} else {
2021-01-12 10:28:58 +03:00
ret = TIFFGetFieldDefaulted(tiff, TIFFTAG_ROWSPERSTRIP, &rows_per_block);
}
if (ret != 1 || rows_per_block == (UINT32)(-1)) {
2021-01-12 10:28:58 +03:00
rows_per_block = state->ysize;
}
2021-01-12 10:28:58 +03:00
TRACE(("RowsPerBlock: %u \n", rows_per_block));
if (!(TIFFRGBAImageOK(tiff, emsg) && TIFFRGBAImageBegin(&img, tiff, 0, emsg))) {
TRACE(("Decode error, msg: %s", emsg));
state->errcode = IMAGING_CODEC_BROKEN;
// nothing to clean up, just return
return -1;
}
img.req_orientation = ORIENTATION_TOPLEFT;
img.col_offset = 0;
/* overflow check for row byte size */
if (INT_MAX / 4 < img.width) {
state->errcode = IMAGING_CODEC_MEMORY;
2021-01-14 05:33:49 +03:00
goto decodergba_err;
}
2021-01-03 06:17:51 +03:00
// TiffRGBAImages are 32bits/pixel.
row_byte_size = img.width * 4;
/* overflow check for realloc */
2021-01-12 10:28:58 +03:00
if (INT_MAX / row_byte_size < rows_per_block) {
state->errcode = IMAGING_CODEC_MEMORY;
2021-01-14 05:33:49 +03:00
goto decodergba_err;
}
2021-01-12 10:28:58 +03:00
state->bytes = rows_per_block * row_byte_size;
2021-01-12 10:28:58 +03:00
TRACE(("BlockSize: %d \n", state->bytes));
/* realloc to fit whole strip */
/* malloc check above */
new_data = realloc(state->buffer, state->bytes);
if (!new_data) {
state->errcode = IMAGING_CODEC_MEMORY;
2021-01-14 05:33:49 +03:00
goto decodergba_err;
}
state->buffer = new_data;
2021-01-12 10:28:58 +03:00
for (; state->y < state->ysize; state->y += rows_per_block) {
img.row_offset = state->y;
2021-01-12 10:28:58 +03:00
rows_to_read = min(rows_per_block, img.height - state->y);
if (!TIFFRGBAImageGet(&img, (UINT32 *)state->buffer, img.width, rows_to_read)) {
TRACE(("Decode Error, y: %d\n", state->y));
state->errcode = IMAGING_CODEC_BROKEN;
2021-01-14 05:33:49 +03:00
goto decodergba_err;
}
2021-01-12 09:06:49 +03:00
#if WORDS_BIGENDIAN
TIFFSwabArrayOfLong((UINT32 *)state->buffer, img.width * rows_to_read);
#endif
TRACE(("Decoded strip for row %d \n", state->y));
// iterate over each row in the strip and stuff data into image
2021-01-12 10:28:58 +03:00
for (current_row = 0;
current_row < min((INT32)rows_per_block, state->ysize - state->y);
current_row++) {
TRACE(("Writing data into line %d ; \n", state->y + current_row));
2021-01-12 10:28:58 +03:00
// UINT8 * bbb = state->buffer + current_row * (state->bytes /
// rows_per_block); TRACE(("chars: %x %x %x %x\n", ((UINT8 *)bbb)[0],
// ((UINT8 *)bbb)[1], ((UINT8 *)bbb)[2], ((UINT8 *)bbb)[3]));
state->shuffle(
2021-01-12 10:28:58 +03:00
(UINT8 *)im->image[state->y + state->yoff + current_row] +
state->xoff * im->pixelsize,
2021-01-12 10:28:58 +03:00
state->buffer + current_row * row_byte_size,
state->xsize
);
}
}
2021-01-14 05:33:49 +03:00
decodergba_err:
TIFFRGBAImageEnd(&img);
if (state->errcode != 0) {
return -1;
}
return 0;
}
2021-01-14 05:33:49 +03:00
int
_decodeTile(
Imaging im,
ImagingCodecState state,
TIFF *tiff,
int planes,
ImagingShuffler *unpackers
) {
INT32 x, y, tile_y, current_tile_length, current_tile_width;
UINT32 tile_width, tile_length;
tsize_t tile_bytes_size, row_byte_size;
2021-01-14 05:33:49 +03:00
UINT8 *new_data;
tile_bytes_size = TIFFTileSize(tiff);
2021-01-14 05:33:49 +03:00
if (tile_bytes_size == 0) {
TRACE(("Decode Error, Can not calculate TileSize\n"));
state->errcode = IMAGING_CODEC_BROKEN;
2021-01-14 05:33:49 +03:00
return -1;
}
row_byte_size = TIFFTileRowSize(tiff);
2021-01-14 05:33:49 +03:00
if (row_byte_size == 0 || row_byte_size > tile_bytes_size) {
TRACE(("Decode Error, Can not calculate TileRowSize\n"));
state->errcode = IMAGING_CODEC_BROKEN;
2021-01-14 05:33:49 +03:00
return -1;
}
/* overflow check for realloc */
if (tile_bytes_size > INT_MAX - 1) {
2021-01-14 05:33:49 +03:00
state->errcode = IMAGING_CODEC_MEMORY;
return -1;
}
TIFFGetField(tiff, TIFFTAG_TILEWIDTH, &tile_width);
TIFFGetField(tiff, TIFFTAG_TILELENGTH, &tile_length);
if (tile_width > INT_MAX || tile_length > INT_MAX) {
// state->x and state->y are ints
state->errcode = IMAGING_CODEC_MEMORY;
return -1;
}
2021-01-26 08:45:57 +03:00
if (tile_bytes_size > ((tile_length * state->bits / planes + 7) / 8) * tile_width) {
// If the tile size as expected by LibTiff isn't what we're expecting, abort.
// man: TIFFTileSize returns the equivalent size for a tile of data as it
// would be returned in a call to TIFFReadTile ...
2021-01-26 08:45:57 +03:00
state->errcode = IMAGING_CODEC_BROKEN;
return -1;
}
state->bytes = tile_bytes_size;
2021-01-14 05:33:49 +03:00
TRACE(("TIFFTileSize: %d\n", state->bytes));
2021-01-26 08:45:57 +03:00
/* realloc to fit whole tile */
/* malloc check above */
new_data = realloc(state->buffer, state->bytes);
if (!new_data) {
state->errcode = IMAGING_CODEC_MEMORY;
return -1;
}
state->buffer = new_data;
2021-01-14 05:33:49 +03:00
for (y = state->yoff; y < state->ysize; y += tile_length) {
int plane;
for (plane = 0; plane < planes; plane++) {
ImagingShuffler shuffler = unpackers[plane];
for (x = state->xoff; x < state->xsize; x += tile_width) {
if (TIFFReadTile(tiff, (tdata_t)state->buffer, x, y, 0, plane) == -1) {
TRACE(("Decode Error, Tile at %dx%d\n", x, y));
state->errcode = IMAGING_CODEC_BROKEN;
return -1;
}
TRACE(("Read tile at %dx%d; \n\n", x, y));
current_tile_width = min((INT32)tile_width, state->xsize - x);
current_tile_length = min((INT32)tile_length, state->ysize - y);
2021-01-14 05:33:49 +03:00
// iterate over each line in the tile and stuff data into image
for (tile_y = 0; tile_y < current_tile_length; tile_y++) {
TRACE(
("Writing tile data at %dx%d using tile_width: %d; \n",
tile_y + y,
x,
current_tile_width)
);
2021-01-14 05:33:49 +03:00
// UINT8 * bbb = state->buffer + tile_y * row_byte_size;
// TRACE(("chars: %x%x%x%x\n", ((UINT8 *)bbb)[0], ((UINT8 *)bbb)[1],
// ((UINT8 *)bbb)[2], ((UINT8 *)bbb)[3]));
2021-01-14 05:33:49 +03:00
shuffler(
(UINT8 *)im->image[tile_y + y] + x * im->pixelsize,
state->buffer + tile_y * row_byte_size,
current_tile_width
);
2021-01-14 05:33:49 +03:00
}
}
}
}
return 0;
}
int
_decodeStrip(
Imaging im,
ImagingCodecState state,
TIFF *tiff,
int planes,
ImagingShuffler *unpackers
) {
INT32 strip_row = 0;
UINT8 *new_data;
UINT32 rows_per_strip;
int ret;
2021-04-01 00:17:20 +03:00
tsize_t strip_size, row_byte_size, unpacker_row_byte_size;
ret = TIFFGetField(tiff, TIFFTAG_ROWSPERSTRIP, &rows_per_strip);
if (ret != 1 || rows_per_strip == (UINT32)(-1)) {
rows_per_strip = state->ysize;
}
if (rows_per_strip > INT_MAX) {
state->errcode = IMAGING_CODEC_MEMORY;
return -1;
}
TRACE(("RowsPerStrip: %u\n", rows_per_strip));
strip_size = TIFFStripSize(tiff);
if (strip_size > INT_MAX - 1) {
state->errcode = IMAGING_CODEC_MEMORY;
return -1;
}
2021-01-26 08:45:57 +03:00
2021-04-01 00:17:20 +03:00
unpacker_row_byte_size = (state->xsize * state->bits / planes + 7) / 8;
if (strip_size > (unpacker_row_byte_size * rows_per_strip)) {
2021-01-26 08:45:57 +03:00
// If the strip size as expected by LibTiff isn't what we're expecting, abort.
// man: TIFFStripSize returns the equivalent size for a strip of data as it
// would be returned in a call to TIFFReadEncodedStrip ...
2021-01-26 08:45:57 +03:00
state->errcode = IMAGING_CODEC_BROKEN;
return -1;
}
state->bytes = strip_size;
TRACE(("StripSize: %d \n", state->bytes));
row_byte_size = TIFFScanlineSize(tiff);
2021-04-01 00:17:20 +03:00
// if the unpacker calculated row size is > row byte size, (at least) the last
// row of the strip will have a read buffer overflow.
if (row_byte_size == 0 || unpacker_row_byte_size > row_byte_size) {
state->errcode = IMAGING_CODEC_BROKEN;
return -1;
}
TRACE(("RowsByteSize: %u \n", row_byte_size));
/* realloc to fit whole strip */
/* malloc check above */
new_data = realloc(state->buffer, state->bytes);
if (!new_data) {
state->errcode = IMAGING_CODEC_MEMORY;
return -1;
}
state->buffer = new_data;
for (; state->y < state->ysize; state->y += rows_per_strip) {
2021-01-12 00:28:23 +03:00
int plane;
for (plane = 0; plane < planes; plane++) {
ImagingShuffler shuffler = unpackers[plane];
if (TIFFReadEncodedStrip(
tiff,
TIFFComputeStrip(tiff, state->y, plane),
(tdata_t)state->buffer,
strip_size
) == -1) {
TRACE(("Decode Error, strip %d\n", TIFFComputeStrip(tiff, state->y, 0))
);
state->errcode = IMAGING_CODEC_BROKEN;
return -1;
}
TRACE(("Decoded strip for row %d \n", state->y));
// iterate over each row in the strip and stuff data into image
for (strip_row = 0;
strip_row < min((INT32)rows_per_strip, state->ysize - state->y);
strip_row++) {
TRACE(("Writing data into line %d ; \n", state->y + strip_row));
// UINT8 * bbb = state->buffer + strip_row * (state->bytes /
// rows_per_strip); TRACE(("chars: %x %x %x %x\n", ((UINT8 *)bbb)[0],
// ((UINT8 *)bbb)[1], ((UINT8 *)bbb)[2], ((UINT8 *)bbb)[3]));
shuffler(
(UINT8 *)im->image[state->y + state->yoff + strip_row] +
state->xoff * im->pixelsize,
state->buffer + strip_row * row_byte_size,
state->xsize
);
}
}
}
return 0;
}
int
ImagingLibTiffDecode(
Imaging im, ImagingCodecState state, UINT8 *buffer, Py_ssize_t bytes
) {
TIFFSTATE *clientstate = (TIFFSTATE *)state->context;
char *filename = "tempfile.tif";
2021-05-31 13:18:34 +03:00
char *mode = "rC";
TIFF *tiff;
uint16_t photometric = 0; // init to not PHOTOMETRIC_YCBCR
uint16_t compression;
2021-01-14 05:33:49 +03:00
int readAsRGBA = 0;
uint16_t planarconfig = 0;
2021-01-10 21:29:56 +03:00
int planes = 1;
ImagingShuffler unpackers[4];
2022-01-18 06:19:43 +03:00
INT32 img_width, img_height;
2021-01-10 00:45:38 +03:00
memset(unpackers, 0, sizeof(ImagingShuffler) * 4);
2020-12-31 16:35:26 +03:00
2018-10-19 21:42:40 +03:00
/* buffer is the encoded file, bytes is the length of the encoded file */
/* it all ends up in state->buffer, which is a uint8* from Imaging.h */
TRACE(("in decoder: bytes %d\n", bytes));
2018-10-19 21:42:40 +03:00
TRACE(
("State: count %d, state %d, x %d, y %d, ystep %d\n",
state->count,
state->state,
state->x,
state->y,
state->ystep)
);
2018-10-19 21:42:40 +03:00
TRACE(
("State: xsize %d, ysize %d, xoff %d, yoff %d \n",
state->xsize,
state->ysize,
state->xoff,
state->yoff)
);
2018-10-19 21:42:40 +03:00
TRACE(("State: bits %d, bytes %d \n", state->bits, state->bytes));
TRACE(
("Buffer: %p: %c%c%c%c\n",
buffer,
(char)buffer[0],
(char)buffer[1],
(char)buffer[2],
(char)buffer[3])
);
2018-10-19 21:42:40 +03:00
TRACE(
("State->Buffer: %c%c%c%c\n",
(char)state->buffer[0],
(char)state->buffer[1],
(char)state->buffer[2],
(char)state->buffer[3])
);
2018-10-19 21:42:40 +03:00
TRACE(
("Image: mode %s, type %d, bands: %d, xsize %d, ysize %d \n",
im->mode,
im->type,
im->bands,
im->xsize,
im->ysize)
);
2018-10-19 21:42:40 +03:00
TRACE(
("Image: image8 %p, image32 %p, image %p, block %p \n",
im->image8,
im->image32,
im->image,
im->block)
);
2018-10-19 21:42:40 +03:00
TRACE(("Image: pixelsize: %d, linesize %d \n", im->pixelsize, im->linesize));
dump_state(clientstate);
clientstate->size = bytes;
clientstate->eof = clientstate->size;
clientstate->loc = 0;
clientstate->data = (tdata_t)buffer;
clientstate->flrealloc = 0;
dump_state(clientstate);
2013-07-01 19:48:21 +04:00
TIFFSetWarningHandler(NULL);
TIFFSetWarningHandlerExt(NULL);
2018-10-19 21:42:40 +03:00
if (clientstate->fp) {
TRACE(("Opening using fd: %d\n", clientstate->fp));
lseek(clientstate->fp, 0, SEEK_SET); // Sometimes, I get it set to the end.
2020-08-30 05:30:47 +03:00
tiff = TIFFFdOpen(fd_to_tiff_fd(clientstate->fp), filename, mode);
2018-10-19 21:42:40 +03:00
} else {
TRACE(("Opening from string\n"));
tiff = TIFFClientOpen(
filename,
mode,
(thandle_t)clientstate,
_tiffReadProc,
_tiffWriteProc,
_tiffSeekProc,
_tiffCloseProc,
_tiffSizeProc,
_tiffMapProc,
_tiffUnmapProc
);
2018-10-19 21:42:40 +03:00
}
if (!tiff) {
TRACE(("Error, didn't get the tiff\n"));
state->errcode = IMAGING_CODEC_BROKEN;
return -1;
}
if (clientstate->ifd) {
2018-10-19 21:42:40 +03:00
int rv;
uint32_t ifdoffset = clientstate->ifd;
2018-10-19 21:42:40 +03:00
TRACE(("reading tiff ifd %u\n", ifdoffset));
rv = TIFFSetSubDirectory(tiff, ifdoffset);
if (!rv) {
TRACE(("error in TIFFSetSubDirectory"));
goto decode_err;
2018-10-19 21:42:40 +03:00
}
}
2021-03-31 22:04:59 +03:00
TIFFGetField(tiff, TIFFTAG_IMAGEWIDTH, &img_width);
TIFFGetField(tiff, TIFFTAG_IMAGELENGTH, &img_height);
if (state->xsize != img_width || state->ysize != img_height) {
TRACE(
("Inconsistent Image Error: %d =? %d, %d =? %d",
state->xsize,
img_width,
state->ysize,
img_height)
);
2021-03-31 22:04:59 +03:00
state->errcode = IMAGING_CODEC_BROKEN;
goto decode_err;
}
TIFFGetField(tiff, TIFFTAG_PHOTOMETRIC, &photometric);
TIFFGetField(tiff, TIFFTAG_COMPRESSION, &compression);
TIFFGetFieldDefaulted(tiff, TIFFTAG_PLANARCONFIG, &planarconfig);
2021-01-14 05:33:49 +03:00
// Dealing with YCbCr images is complicated in case if subsampling
// Let LibTiff read them as RGBA
readAsRGBA = photometric == PHOTOMETRIC_YCBCR;
if (readAsRGBA && compression == COMPRESSION_JPEG &&
planarconfig == PLANARCONFIG_CONTIG) {
// If using new JPEG compression, let libjpeg do RGB conversion for performance
// reasons
TIFFSetField(tiff, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB);
2021-01-14 05:33:49 +03:00
readAsRGBA = 0;
}
2021-01-14 05:33:49 +03:00
if (readAsRGBA) {
_decodeAsRGBA(im, state, tiff);
} else {
2021-01-14 05:33:49 +03:00
planes = _pickUnpackers(im, state, tiff, planarconfig, unpackers);
if (planes <= 0) {
goto decode_err;
}
2021-01-12 10:28:58 +03:00
if (TIFFIsTiled(tiff)) {
2021-01-14 05:33:49 +03:00
_decodeTile(im, state, tiff, planes, unpackers);
} else {
2021-01-12 10:28:58 +03:00
_decodeStrip(im, state, tiff, planes, unpackers);
}
2021-01-12 10:28:58 +03:00
if (!state->errcode) {
// Check if raw mode was RGBa and it was stored on separate planes
// so we have to convert it to RGBA
if (planes > 3 && strcmp(im->mode, "RGBA") == 0) {
uint16_t extrasamples;
uint16_t *sampleinfo;
2021-01-12 10:28:58 +03:00
ImagingShuffler shuffle;
INT32 y;
TIFFGetFieldDefaulted(
tiff, TIFFTAG_EXTRASAMPLES, &extrasamples, &sampleinfo
);
2021-01-12 10:28:58 +03:00
if (extrasamples >= 1 && (sampleinfo[0] == EXTRASAMPLE_UNSPECIFIED ||
sampleinfo[0] == EXTRASAMPLE_ASSOCALPHA)) {
2021-01-12 10:28:58 +03:00
shuffle = ImagingFindUnpacker("RGBA", "RGBa", NULL);
for (y = state->yoff; y < state->ysize; y++) {
UINT8 *ptr = (UINT8 *)im->image[y + state->yoff] +
state->xoff * im->pixelsize;
2021-01-12 10:28:58 +03:00
shuffle(ptr, ptr, state->xsize);
}
}
}
}
}
decode_err:
2023-06-05 08:07:11 +03:00
// TIFFClose in libtiff calls tif_closeproc and TIFFCleanup
if (clientstate->fp) {
// Python will manage the closing of the file rather than libtiff
2023-06-05 08:07:11 +03:00
// So only call TIFFCleanup
TIFFCleanup(tiff);
} else {
2023-06-05 08:07:11 +03:00
// When tif_closeproc refers to our custom _tiffCloseProc though,
// that is fine, as it does not close the file
TIFFClose(tiff);
}
2018-10-19 21:42:40 +03:00
TRACE(("Done Decoding, Returning \n"));
// Returning -1 here to force ImageFile.load to break, rather than
// even think about looping back around.
return -1;
}
int
ImagingLibTiffEncodeInit(ImagingCodecState state, char *filename, int fp) {
2018-10-19 21:42:40 +03:00
// Open the FD or the pointer as a tiff file, for writing.
// We may have to do some monkeying around to make this really work.
// If we have a fp, then we're good.
// If we have a memory string, we're probably going to have to malloc, then
// shuffle bytes into the writescanline process.
// Going to have to deal with the directory as well.
2018-10-19 21:42:40 +03:00
TIFFSTATE *clientstate = (TIFFSTATE *)state->context;
int bufsize = 64 * 1024;
char *mode = "w";
TRACE(("initing libtiff\n"));
2018-10-19 21:42:40 +03:00
TRACE(("Filename %s, filepointer: %d \n", filename, fp));
TRACE(
("State: count %d, state %d, x %d, y %d, ystep %d\n",
state->count,
state->state,
state->x,
state->y,
state->ystep)
);
2018-10-19 21:42:40 +03:00
TRACE(
("State: xsize %d, ysize %d, xoff %d, yoff %d \n",
state->xsize,
state->ysize,
state->xoff,
state->yoff)
);
2018-10-19 21:42:40 +03:00
TRACE(("State: bits %d, bytes %d \n", state->bits, state->bytes));
TRACE(("State: context %p \n", state->context));
clientstate->loc = 0;
clientstate->size = 0;
clientstate->eof = 0;
clientstate->data = 0;
clientstate->flrealloc = 0;
clientstate->fp = fp;
state->state = 0;
if (fp) {
TRACE(("Opening using fd: %d for writing \n", clientstate->fp));
2020-08-30 05:30:47 +03:00
clientstate->tiff = TIFFFdOpen(fd_to_tiff_fd(clientstate->fp), filename, mode);
2018-10-19 21:42:40 +03:00
} else {
2022-08-18 12:12:09 +03:00
// calloc a buffer to write the tif, we're going to need to realloc or something
2018-10-19 21:42:40 +03:00
// if we need bigger.
TRACE(("Opening a buffer for writing \n"));
2022-08-18 12:12:09 +03:00
/* calloc check ok, small constant allocation */
clientstate->data = calloc(bufsize, 1);
2018-10-19 21:42:40 +03:00
clientstate->size = bufsize;
clientstate->flrealloc = 1;
2018-10-19 21:42:40 +03:00
if (!clientstate->data) {
TRACE(("Error, couldn't allocate a buffer of size %d\n", bufsize));
return 0;
}
2018-10-19 21:42:40 +03:00
clientstate->tiff = TIFFClientOpen(
filename,
mode,
(thandle_t)clientstate,
_tiffReadProc,
_tiffWriteProc,
_tiffSeekProc,
_tiffCloseProc,
_tiffSizeProc,
_tiffNullMapProc,
_tiffUnmapProc
); /*force no mmap*/
2018-10-19 21:42:40 +03:00
}
2018-10-19 21:42:40 +03:00
if (!clientstate->tiff) {
TRACE(("Error, couldn't open tiff file\n"));
return 0;
}
return 1;
}
int
ImagingLibTiffMergeFieldInfo(
ImagingCodecState state, TIFFDataType field_type, int key, int is_var_length
) {
// Refer to libtiff docs (http://www.simplesystems.org/libtiff/addingtags.html)
2018-10-25 11:45:13 +03:00
TIFFSTATE *clientstate = (TIFFSTATE *)state->context;
uint32_t n;
int status = 0;
2018-10-25 11:45:13 +03:00
// custom fields added with ImagingLibTiffMergeFieldInfo are only used for
// decoding, ignore readcount;
int readcount = is_var_length ? TIFF_VARIABLE : 1;
// we support writing a single value, or a variable number of values
int writecount = is_var_length ? TIFF_VARIABLE : 1;
// whether the first value should encode the number of values.
int passcount = (is_var_length && field_type != TIFF_ASCII) ? 1 : 0;
TIFFFieldInfo info[] = {
{key,
readcount,
writecount,
field_type,
FIELD_CUSTOM,
1,
passcount,
"CustomField"}
};
2018-10-25 11:45:13 +03:00
n = sizeof(info) / sizeof(info[0]);
// Test for libtiff 4.0 or later, excluding libtiff 3.9.6 and 3.9.7
#if TIFFLIB_VERSION >= 20111221 && TIFFLIB_VERSION != 20120218 && \
TIFFLIB_VERSION != 20120922
status = TIFFMergeFieldInfo(clientstate->tiff, info, n);
#else
TIFFMergeFieldInfo(clientstate->tiff, info, n);
#endif
return status;
2018-10-25 11:45:13 +03:00
}
int
ImagingLibTiffSetField(ImagingCodecState state, ttag_t tag, ...) {
2018-10-19 21:42:40 +03:00
// after tif_dir.c->TIFFSetField.
TIFFSTATE *clientstate = (TIFFSTATE *)state->context;
va_list ap;
int status;
va_start(ap, tag);
status = TIFFVSetField(clientstate->tiff, tag, ap);
va_end(ap);
return status;
}
int
ImagingLibTiffEncode(Imaging im, ImagingCodecState state, UINT8 *buffer, int bytes) {
2018-10-19 21:42:40 +03:00
/* One shot encoder. Encode everything to the tiff in the clientstate.
If we're running off of a FD, then run once, we're good, everything
ends up in the file, we close and we're done.
2018-10-19 21:42:40 +03:00
If we're going to memory, then we need to write the whole file into memory, then
parcel it back out to the pystring buffer bytes at a time.
2018-10-19 21:42:40 +03:00
*/
2018-10-19 21:42:40 +03:00
TIFFSTATE *clientstate = (TIFFSTATE *)state->context;
TIFF *tiff = clientstate->tiff;
TRACE(("in encoder: bytes %d\n", bytes));
2018-10-19 21:42:40 +03:00
TRACE(
("State: count %d, state %d, x %d, y %d, ystep %d\n",
state->count,
state->state,
state->x,
state->y,
state->ystep)
);
2018-10-19 21:42:40 +03:00
TRACE(
("State: xsize %d, ysize %d, xoff %d, yoff %d \n",
state->xsize,
state->ysize,
state->xoff,
state->yoff)
);
2018-10-19 21:42:40 +03:00
TRACE(("State: bits %d, bytes %d \n", state->bits, state->bytes));
TRACE(
("Buffer: %p: %c%c%c%c\n",
buffer,
(char)buffer[0],
(char)buffer[1],
(char)buffer[2],
(char)buffer[3])
);
2018-10-19 21:42:40 +03:00
TRACE(
("State->Buffer: %c%c%c%c\n",
(char)state->buffer[0],
(char)state->buffer[1],
(char)state->buffer[2],
(char)state->buffer[3])
);
2018-10-19 21:42:40 +03:00
TRACE(
("Image: mode %s, type %d, bands: %d, xsize %d, ysize %d \n",
im->mode,
im->type,
im->bands,
im->xsize,
im->ysize)
);
2018-10-19 21:42:40 +03:00
TRACE(
("Image: image8 %p, image32 %p, image %p, block %p \n",
im->image8,
im->image32,
im->image,
im->block)
);
2018-10-19 21:42:40 +03:00
TRACE(("Image: pixelsize: %d, linesize %d \n", im->pixelsize, im->linesize));
dump_state(clientstate);
if (state->state == 0) {
2022-08-27 11:48:47 +03:00
TRACE(("Encoding line by line"));
2018-10-19 21:42:40 +03:00
while (state->y < state->ysize) {
state->shuffle(
state->buffer,
(UINT8 *)im->image[state->y + state->yoff] +
state->xoff * im->pixelsize,
state->xsize
);
2021-01-03 06:17:51 +03:00
2018-10-19 21:42:40 +03:00
if (TIFFWriteScanline(
tiff, (tdata_t)(state->buffer), (uint32_t)state->y, 0
) == -1) {
2018-10-19 21:42:40 +03:00
TRACE(("Encode Error, row %d\n", state->y));
state->errcode = IMAGING_CODEC_BROKEN;
// TIFFClose in libtiff calls tif_closeproc and TIFFCleanup
if (clientstate->fp) {
// Python will manage the closing of the file rather than libtiff
// So only call TIFFCleanup
TIFFCleanup(tiff);
} else {
// When tif_closeproc refers to our custom _tiffCloseProc though,
// that is fine, as it does not close the file
TIFFClose(tiff);
}
2018-10-19 21:42:40 +03:00
if (!clientstate->fp) {
free(clientstate->data);
}
return -1;
}
state->y++;
}
if (state->y == state->ysize) {
state->state = 1;
TRACE(("Flushing \n"));
if (!TIFFFlush(tiff)) {
TRACE(("Error flushing the tiff"));
// likely reason is memory.
state->errcode = IMAGING_CODEC_MEMORY;
if (clientstate->fp) {
TIFFCleanup(tiff);
} else {
TIFFClose(tiff);
}
2018-10-19 21:42:40 +03:00
if (!clientstate->fp) {
free(clientstate->data);
}
return -1;
}
TRACE(("Closing \n"));
if (clientstate->fp) {
TIFFCleanup(tiff);
} else {
TIFFClose(tiff);
}
2018-10-19 21:42:40 +03:00
// reset the clientstate metadata to use it to read out the buffer.
clientstate->loc = 0;
clientstate->size = clientstate->eof; // redundant?
}
}
if (state->state == 1 && !clientstate->fp) {
2024-05-19 15:00:45 +03:00
int read =
(int)_tiffReadProc((thandle_t)clientstate, (tdata_t)buffer, (tsize_t)bytes);
2018-10-19 21:42:40 +03:00
TRACE(
("Buffer: %p: %c%c%c%c\n",
buffer,
(char)buffer[0],
(char)buffer[1],
(char)buffer[2],
(char)buffer[3])
);
2018-10-19 21:42:40 +03:00
if (clientstate->loc == clientstate->eof) {
TRACE(("Hit EOF, calling an end, freeing data"));
state->errcode = IMAGING_CODEC_END;
free(clientstate->data);
}
return read;
}
state->errcode = IMAGING_CODEC_END;
return 0;
}
const char *
ImagingTiffVersion(void) {
return TIFFGetVersion();
}
#endif