Pillow/Tests/test_image.py

720 lines
21 KiB
Python
Raw Normal View History

import io
import os
import shutil
import tempfile
import PIL
import pytest
2020-06-21 15:17:18 +03:00
from PIL import Image, ImageDraw, ImagePalette, ImageShow, UnidentifiedImageError
from .helper import (
assert_image_equal,
assert_image_similar,
assert_not_all_same,
hopper,
is_win32,
)
2020-02-23 00:03:01 +03:00
class TestImage:
2017-08-05 21:58:31 +03:00
def test_image_modes_success(self):
for mode in [
2019-06-13 18:54:24 +03:00
"1",
"P",
"PA",
"L",
"LA",
"La",
"F",
"I",
"I;16",
"I;16L",
"I;16B",
"I;16N",
"RGB",
"RGBX",
"RGBA",
"RGBa",
"CMYK",
"YCbCr",
"LAB",
"HSV",
2017-08-05 21:58:31 +03:00
]:
Image.new(mode, (1, 1))
def test_image_modes_fail(self):
for mode in [
2019-06-13 18:54:24 +03:00
"",
"bad",
"very very long",
"BGR;15",
"BGR;16",
"BGR;24",
"BGR;32",
2017-08-05 21:58:31 +03:00
]:
with pytest.raises(ValueError) as e:
2017-12-19 16:12:02 +03:00
Image.new(mode, (1, 1))
assert str(e.value) == "unrecognized image mode"
2017-08-05 21:58:31 +03:00
2019-11-19 13:20:02 +03:00
def test_exception_inheritance(self):
assert issubclass(UnidentifiedImageError, OSError)
2019-11-19 13:20:02 +03:00
2014-06-10 13:10:47 +04:00
def test_sanity(self):
2014-06-10 13:10:47 +04:00
im = Image.new("L", (100, 100))
assert repr(im)[:45] == "<PIL.Image.Image image mode=L size=100x100 at"
assert im.mode == "L"
assert im.size == (100, 100)
2014-06-10 13:10:47 +04:00
im = Image.new("RGB", (100, 100))
assert repr(im)[:45] == "<PIL.Image.Image image mode=RGB size=100x100 "
assert im.mode == "RGB"
assert im.size == (100, 100)
2014-06-10 13:10:47 +04:00
Image.new("L", (100, 100), None)
im2 = Image.new("L", (100, 100), 0)
im3 = Image.new("L", (100, 100), "black")
assert im2.getcolors() == [(10000, 0)]
assert im3.getcolors() == [(10000, 0)]
with pytest.raises(ValueError):
Image.new("X", (100, 100))
with pytest.raises(ValueError):
Image.new("", (100, 100))
# with pytest.raises(MemoryError):
# Image.new("L", (1000000, 1000000))
2015-06-24 03:35:37 +03:00
def test_width_height(self):
im = Image.new("RGB", (1, 2))
assert im.width == 1
assert im.height == 2
2015-06-24 03:35:37 +03:00
with pytest.raises(AttributeError):
im.size = (3, 4)
2015-06-24 03:35:37 +03:00
2015-06-09 07:36:34 +03:00
def test_invalid_image(self):
2019-09-26 15:12:28 +03:00
import io
2019-06-13 18:54:24 +03:00
2019-09-26 15:12:28 +03:00
im = io.BytesIO(b"")
with pytest.raises(UnidentifiedImageError):
Image.open(im)
2015-06-09 07:36:34 +03:00
2017-09-01 13:36:51 +03:00
def test_bad_mode(self):
with pytest.raises(ValueError):
Image.open("filename", "bad mode")
2015-06-09 07:36:34 +03:00
def test_stringio(self):
with pytest.raises(ValueError):
Image.open(io.StringIO())
2020-02-23 00:03:01 +03:00
def test_pathlib(self, tmp_path):
from PIL.Image import Path
2019-06-13 18:54:24 +03:00
Improve handling of file resources Follow Python's file object semantics. User code is responsible for closing resources (usually through a context manager) in a deterministic way. To achieve this, remove __del__ functions. These functions used to closed open file handlers in an attempt to silence Python ResourceWarnings. However, using __del__ has the following drawbacks: - __del__ isn't called until the object's reference count reaches 0. Therefore, resource handlers remain open or in use longer than necessary. - The __del__ method isn't guaranteed to execute on system exit. See the Python documentation: https://docs.python.org/3/reference/datamodel.html#object.__del__ > It is not guaranteed that __del__() methods are called for objects > that still exist when the interpreter exits. - Exceptions that occur inside __del__ are ignored instead of raised. This has the potential of hiding bugs. This is also in the Python documentation: > Warning: Due to the precarious circumstances under which __del__() > methods are invoked, exceptions that occur during their execution > are ignored, and a warning is printed to sys.stderr instead. Instead, always close resource handlers when they are no longer in use. This will close the file handler at a specified point in the user's code and not wait until the interpreter chooses to. It is always guaranteed to run. And, if an exception occurs while closing the file handler, the bug will not be ignored. Now, when code receives a ResourceWarning, it will highlight an area that is mishandling resources. It should not simply be silenced, but fixed by closing resources with a context manager. All warnings that were emitted during tests have been cleaned up. To enable warnings, I passed the `-Wa` CLI option to Python. This exposed some mishandling of resources in ImageFile.__init__() and SpiderImagePlugin.loadImageSeries(), they too were fixed.
2019-05-25 19:30:58 +03:00
with Image.open(Path("Tests/images/multipage-mmap.tiff")) as im:
assert im.mode == "P"
assert im.size == (10, 10)
2019-11-25 23:03:23 +03:00
with Image.open(Path("Tests/images/hopper.jpg")) as im:
assert im.mode == "RGB"
assert im.size == (128, 128)
2015-08-05 14:29:24 +03:00
2020-02-23 00:03:01 +03:00
temp_file = str(tmp_path / "temp.jpg")
2019-11-25 23:03:23 +03:00
if os.path.exists(temp_file):
os.remove(temp_file)
im.save(Path(temp_file))
2020-02-23 00:03:01 +03:00
def test_fp_name(self, tmp_path):
temp_file = str(tmp_path / "temp.jpg")
class FP:
def write(a, b):
pass
2019-06-13 18:54:24 +03:00
fp = FP()
fp.name = temp_file
im = hopper()
im.save(fp)
def test_tempfile(self):
# see #1460, pathlib support breaks tempfile.TemporaryFile on py27
# Will error out on save on 3.0.0
im = hopper()
2016-12-28 01:54:10 +03:00
with tempfile.TemporaryFile() as fp:
2019-06-13 18:54:24 +03:00
im.save(fp, "JPEG")
2016-12-28 01:54:10 +03:00
fp.seek(0)
2019-11-25 23:03:23 +03:00
with Image.open(fp) as reloaded:
assert_image_similar(im, reloaded, 20)
2020-02-23 00:03:01 +03:00
def test_unknown_extension(self, tmp_path):
im = hopper()
2020-02-23 00:03:01 +03:00
temp_file = str(tmp_path / "temp.unknown")
with pytest.raises(ValueError):
im.save(temp_file)
2014-06-10 13:10:47 +04:00
def test_internals(self):
im = Image.new("L", (100, 100))
im.readonly = 1
im._copy()
assert not im.readonly
2014-06-10 13:10:47 +04:00
im.readonly = 1
im.paste(0, (0, 0, 100, 100))
assert not im.readonly
2014-06-10 13:10:47 +04:00
2020-02-23 00:03:01 +03:00
@pytest.mark.skipif(is_win32(), reason="Test requires opening tempfile twice")
def test_readonly_save(self, tmp_path):
temp_file = str(tmp_path / "temp.bmp")
2019-03-17 15:37:40 +03:00
shutil.copy("Tests/images/rgb32bf-rgba.bmp", temp_file)
2019-11-25 23:03:23 +03:00
with Image.open(temp_file) as im:
assert im.readonly
2019-11-25 23:03:23 +03:00
im.save(temp_file)
2019-03-17 15:37:40 +03:00
2020-02-23 00:03:01 +03:00
def test_dump(self, tmp_path):
im = Image.new("L", (10, 10))
2020-02-23 00:03:01 +03:00
im._dump(str(tmp_path / "temp_L.ppm"))
im = Image.new("RGB", (10, 10))
2020-02-23 00:03:01 +03:00
im._dump(str(tmp_path / "temp_RGB.ppm"))
im = Image.new("HSV", (10, 10))
with pytest.raises(ValueError):
2020-02-23 00:03:01 +03:00
im._dump(str(tmp_path / "temp_HSV.ppm"))
2014-06-10 13:10:47 +04:00
2014-07-05 17:29:40 +04:00
def test_comparison_with_other_type(self):
# Arrange
2019-06-13 18:54:24 +03:00
item = Image.new("RGB", (25, 25), "#000")
2014-07-05 17:29:40 +04:00
num = 12
# Act/Assert
# Shouldn't cause AttributeError (#774)
assert item is not None
assert item != num
2014-07-05 17:29:40 +04:00
2014-07-10 03:00:26 +04:00
def test_expand_x(self):
# Arrange
im = hopper()
2014-07-10 03:00:26 +04:00
orig_size = im.size
xmargin = 5
# Act
im = im._expand(xmargin)
# Assert
assert im.size[0] == orig_size[0] + 2 * xmargin
assert im.size[1] == orig_size[1] + 2 * xmargin
2014-07-10 03:00:26 +04:00
def test_expand_xy(self):
# Arrange
im = hopper()
2014-07-10 03:00:26 +04:00
orig_size = im.size
xmargin = 5
ymargin = 3
# Act
im = im._expand(xmargin, ymargin)
# Assert
assert im.size[0] == orig_size[0] + 2 * xmargin
assert im.size[1] == orig_size[1] + 2 * ymargin
2014-07-10 03:00:26 +04:00
def test_getbands(self):
2017-08-12 14:10:39 +03:00
# Assert
assert hopper("RGB").getbands() == ("R", "G", "B")
assert hopper("YCbCr").getbands() == ("Y", "Cb", "Cr")
2014-07-10 03:00:26 +04:00
2017-08-12 14:10:39 +03:00
def test_getchannel_wrong_params(self):
im = hopper()
2014-07-10 03:00:26 +04:00
with pytest.raises(ValueError):
im.getchannel(-1)
with pytest.raises(ValueError):
im.getchannel(3)
with pytest.raises(ValueError):
im.getchannel("Z")
with pytest.raises(ValueError):
im.getchannel("1")
2017-08-12 14:10:39 +03:00
def test_getchannel(self):
2019-06-13 18:54:24 +03:00
im = hopper("YCbCr")
2017-08-12 14:10:39 +03:00
Y, Cb, Cr = im.split()
assert_image_equal(Y, im.getchannel(0))
assert_image_equal(Y, im.getchannel("Y"))
assert_image_equal(Cb, im.getchannel(1))
assert_image_equal(Cb, im.getchannel("Cb"))
assert_image_equal(Cr, im.getchannel(2))
assert_image_equal(Cr, im.getchannel("Cr"))
2014-07-10 03:00:26 +04:00
def test_getbbox(self):
# Arrange
im = hopper()
2014-07-10 03:00:26 +04:00
# Act
bbox = im.getbbox()
# Assert
assert bbox == (0, 0, 128, 128)
2014-07-10 03:00:26 +04:00
def test_ne(self):
# Arrange
2019-06-13 18:54:24 +03:00
im1 = Image.new("RGB", (25, 25), "black")
im2 = Image.new("RGB", (25, 25), "white")
# Act / Assert
assert im1 != im2
def test_alpha_composite(self):
2017-02-14 12:27:02 +03:00
# https://stackoverflow.com/questions/3374878
# Arrange
2019-06-13 18:54:24 +03:00
expected_colors = sorted(
[
(1122, (128, 127, 0, 255)),
(1089, (0, 255, 0, 255)),
(3300, (255, 0, 0, 255)),
(1156, (170, 85, 0, 192)),
(1122, (0, 255, 0, 128)),
(1122, (255, 0, 0, 128)),
(1089, (0, 255, 0, 0)),
]
)
dst = Image.new("RGBA", size=(100, 100), color=(0, 255, 0, 255))
draw = ImageDraw.Draw(dst)
draw.rectangle((0, 33, 100, 66), fill=(0, 255, 0, 128))
draw.rectangle((0, 67, 100, 100), fill=(0, 255, 0, 0))
2019-06-13 18:54:24 +03:00
src = Image.new("RGBA", size=(100, 100), color=(255, 0, 0, 255))
draw = ImageDraw.Draw(src)
draw.rectangle((33, 0, 66, 100), fill=(255, 0, 0, 128))
draw.rectangle((67, 0, 100, 100), fill=(255, 0, 0, 0))
# Act
img = Image.alpha_composite(dst, src)
# Assert
img_colors = sorted(img.getcolors())
assert img_colors == expected_colors
2017-06-20 19:54:59 +03:00
def test_alpha_inplace(self):
2019-06-13 18:54:24 +03:00
src = Image.new("RGBA", (128, 128), "blue")
2017-06-20 19:54:59 +03:00
2019-06-13 18:54:24 +03:00
over = Image.new("RGBA", (128, 128), "red")
mask = hopper("L")
2017-06-20 19:54:59 +03:00
over.putalpha(mask)
target = Image.alpha_composite(src, over)
# basic
full = src.copy()
full.alpha_composite(over)
assert_image_equal(full, target)
2017-06-20 19:54:59 +03:00
# with offset down to right
offset = src.copy()
offset.alpha_composite(over, (64, 64))
assert_image_equal(offset.crop((64, 64, 127, 127)), target.crop((0, 0, 63, 63)))
assert offset.size == (128, 128)
2017-06-20 19:54:59 +03:00
# offset and crop
box = src.copy()
box.alpha_composite(over, (64, 64), (0, 0, 32, 32))
assert_image_equal(box.crop((64, 64, 96, 96)), target.crop((0, 0, 32, 32)))
assert_image_equal(box.crop((96, 96, 128, 128)), src.crop((0, 0, 32, 32)))
assert box.size == (128, 128)
# source point
source = src.copy()
source.alpha_composite(over, (32, 32), (32, 32, 96, 96))
assert_image_equal(source.crop((32, 32, 96, 96)), target.crop((32, 32, 96, 96)))
assert source.size == (128, 128)
2017-06-20 19:54:59 +03:00
2017-09-01 13:36:51 +03:00
# errors
with pytest.raises(ValueError):
source.alpha_composite(over, "invalid source")
with pytest.raises(ValueError):
source.alpha_composite(over, (0, 0), "invalid destination")
with pytest.raises(ValueError):
source.alpha_composite(over, 0)
with pytest.raises(ValueError):
source.alpha_composite(over, (0, 0), 0)
with pytest.raises(ValueError):
source.alpha_composite(over, (0, -1))
with pytest.raises(ValueError):
source.alpha_composite(over, (0, 0), (0, -1))
2017-09-01 13:36:51 +03:00
def test_registered_extensions_uninitialized(self):
2017-01-07 05:20:16 +03:00
# Arrange
Image._initialized = 0
extension = Image.EXTENSION
Image.EXTENSION = {}
# Act
2017-01-07 05:20:16 +03:00
Image.registered_extensions()
# Assert
assert Image._initialized == 2
2017-01-07 05:20:16 +03:00
# Restore the original state and assert
Image.EXTENSION = extension
assert Image.EXTENSION
def test_registered_extensions(self):
# Arrange
# Open an image to trigger plugin registration
Improve handling of file resources Follow Python's file object semantics. User code is responsible for closing resources (usually through a context manager) in a deterministic way. To achieve this, remove __del__ functions. These functions used to closed open file handlers in an attempt to silence Python ResourceWarnings. However, using __del__ has the following drawbacks: - __del__ isn't called until the object's reference count reaches 0. Therefore, resource handlers remain open or in use longer than necessary. - The __del__ method isn't guaranteed to execute on system exit. See the Python documentation: https://docs.python.org/3/reference/datamodel.html#object.__del__ > It is not guaranteed that __del__() methods are called for objects > that still exist when the interpreter exits. - Exceptions that occur inside __del__ are ignored instead of raised. This has the potential of hiding bugs. This is also in the Python documentation: > Warning: Due to the precarious circumstances under which __del__() > methods are invoked, exceptions that occur during their execution > are ignored, and a warning is printed to sys.stderr instead. Instead, always close resource handlers when they are no longer in use. This will close the file handler at a specified point in the user's code and not wait until the interpreter chooses to. It is always guaranteed to run. And, if an exception occurs while closing the file handler, the bug will not be ignored. Now, when code receives a ResourceWarning, it will highlight an area that is mishandling resources. It should not simply be silenced, but fixed by closing resources with a context manager. All warnings that were emitted during tests have been cleaned up. To enable warnings, I passed the `-Wa` CLI option to Python. This exposed some mishandling of resources in ImageFile.__init__() and SpiderImagePlugin.loadImageSeries(), they too were fixed.
2019-05-25 19:30:58 +03:00
with Image.open("Tests/images/rgb.jpg"):
pass
# Act
2017-01-07 05:20:16 +03:00
extensions = Image.registered_extensions()
# Assert
assert extensions
2019-06-13 18:54:24 +03:00
for ext in [".cur", ".icns", ".tif", ".tiff"]:
assert ext in extensions
def test_effect_mandelbrot(self):
# Arrange
size = (512, 512)
extent = (-3, -2.5, 2, 2.5)
quality = 100
# Act
im = Image.effect_mandelbrot(size, extent, quality)
# Assert
assert im.size == (512, 512)
2019-11-25 23:03:23 +03:00
with Image.open("Tests/images/effect_mandelbrot.png") as im2:
assert_image_equal(im, im2)
2014-09-02 17:39:35 +04:00
def test_effect_mandelbrot_bad_arguments(self):
# Arrange
size = (512, 512)
# Get coordinates the wrong way round:
extent = (+3, +2.5, -2, -2.5)
# Quality < 2:
quality = 1
# Act/Assert
with pytest.raises(ValueError):
Image.effect_mandelbrot(size, extent, quality)
2014-09-02 17:39:35 +04:00
def test_effect_noise(self):
# Arrange
size = (100, 100)
sigma = 128
# Act
im = Image.effect_noise(size, sigma)
# Assert
assert im.size == (100, 100)
assert im.mode == "L"
p0 = im.getpixel((0, 0))
p1 = im.getpixel((0, 1))
p2 = im.getpixel((0, 2))
p3 = im.getpixel((0, 3))
p4 = im.getpixel((0, 4))
assert_not_all_same([p0, p1, p2, p3, p4])
def test_effect_spread(self):
# Arrange
im = hopper()
distance = 10
# Act
im2 = im.effect_spread(distance)
# Assert
assert im.size == (128, 128)
2019-11-25 23:03:23 +03:00
with Image.open("Tests/images/effect_spread.png") as im3:
assert_image_similar(im2, im3, 110)
def test_check_size(self):
2020-02-23 00:03:01 +03:00
# Checking that the _check_size function throws value errors when we want it to
with pytest.raises(ValueError):
2019-06-13 18:54:24 +03:00
Image.new("RGB", 0) # not a tuple
with pytest.raises(ValueError):
2019-06-13 18:54:24 +03:00
Image.new("RGB", (0,)) # Tuple too short
with pytest.raises(ValueError):
2019-06-13 18:54:24 +03:00
Image.new("RGB", (-1, -1)) # w,h < 0
2016-11-29 22:25:49 +03:00
# this should pass with 0 sized images, #2259
2019-06-13 18:54:24 +03:00
im = Image.new("L", (0, 0))
assert im.size == (0, 0)
2019-06-13 18:54:24 +03:00
im = Image.new("L", (0, 100))
assert im.size == (0, 100)
2017-09-17 02:58:01 +03:00
2019-06-13 18:54:24 +03:00
im = Image.new("L", (100, 0))
assert im.size == (100, 0)
2017-09-17 02:58:01 +03:00
assert Image.new("RGB", (1, 1))
2016-10-04 03:06:35 +03:00
# Should pass lists too
2019-06-13 18:54:24 +03:00
i = Image.new("RGB", [1, 1])
assert isinstance(i.size, tuple)
def test_storage_neg(self):
# Storage.c accepted negative values for xsize, ysize. Was
# test_neg_ppm, but the core function for that has been
# removed Calling directly into core to test the error in
# Storage.c, rather than the size check above
2016-10-04 03:06:35 +03:00
with pytest.raises(ValueError):
2019-06-13 18:54:24 +03:00
Image.core.fill("RGB", (2, -2), (0, 0, 0))
def test_offset_not_implemented(self):
# Arrange
Improve handling of file resources Follow Python's file object semantics. User code is responsible for closing resources (usually through a context manager) in a deterministic way. To achieve this, remove __del__ functions. These functions used to closed open file handlers in an attempt to silence Python ResourceWarnings. However, using __del__ has the following drawbacks: - __del__ isn't called until the object's reference count reaches 0. Therefore, resource handlers remain open or in use longer than necessary. - The __del__ method isn't guaranteed to execute on system exit. See the Python documentation: https://docs.python.org/3/reference/datamodel.html#object.__del__ > It is not guaranteed that __del__() methods are called for objects > that still exist when the interpreter exits. - Exceptions that occur inside __del__ are ignored instead of raised. This has the potential of hiding bugs. This is also in the Python documentation: > Warning: Due to the precarious circumstances under which __del__() > methods are invoked, exceptions that occur during their execution > are ignored, and a warning is printed to sys.stderr instead. Instead, always close resource handlers when they are no longer in use. This will close the file handler at a specified point in the user's code and not wait until the interpreter chooses to. It is always guaranteed to run. And, if an exception occurs while closing the file handler, the bug will not be ignored. Now, when code receives a ResourceWarning, it will highlight an area that is mishandling resources. It should not simply be silenced, but fixed by closing resources with a context manager. All warnings that were emitted during tests have been cleaned up. To enable warnings, I passed the `-Wa` CLI option to Python. This exposed some mishandling of resources in ImageFile.__init__() and SpiderImagePlugin.loadImageSeries(), they too were fixed.
2019-05-25 19:30:58 +03:00
with hopper() as im:
Improve handling of file resources Follow Python's file object semantics. User code is responsible for closing resources (usually through a context manager) in a deterministic way. To achieve this, remove __del__ functions. These functions used to closed open file handlers in an attempt to silence Python ResourceWarnings. However, using __del__ has the following drawbacks: - __del__ isn't called until the object's reference count reaches 0. Therefore, resource handlers remain open or in use longer than necessary. - The __del__ method isn't guaranteed to execute on system exit. See the Python documentation: https://docs.python.org/3/reference/datamodel.html#object.__del__ > It is not guaranteed that __del__() methods are called for objects > that still exist when the interpreter exits. - Exceptions that occur inside __del__ are ignored instead of raised. This has the potential of hiding bugs. This is also in the Python documentation: > Warning: Due to the precarious circumstances under which __del__() > methods are invoked, exceptions that occur during their execution > are ignored, and a warning is printed to sys.stderr instead. Instead, always close resource handlers when they are no longer in use. This will close the file handler at a specified point in the user's code and not wait until the interpreter chooses to. It is always guaranteed to run. And, if an exception occurs while closing the file handler, the bug will not be ignored. Now, when code receives a ResourceWarning, it will highlight an area that is mishandling resources. It should not simply be silenced, but fixed by closing resources with a context manager. All warnings that were emitted during tests have been cleaned up. To enable warnings, I passed the `-Wa` CLI option to Python. This exposed some mishandling of resources in ImageFile.__init__() and SpiderImagePlugin.loadImageSeries(), they too were fixed.
2019-05-25 19:30:58 +03:00
# Act / Assert
with pytest.raises(NotImplementedError):
im.offset(None)
def test_fromstring(self):
with pytest.raises(NotImplementedError):
Image.fromstring()
2017-01-29 19:17:31 +03:00
def test_linear_gradient_wrong_mode(self):
# Arrange
wrong_mode = "RGB"
# Act / Assert
with pytest.raises(ValueError):
Image.linear_gradient(wrong_mode)
2017-01-29 19:17:31 +03:00
def test_linear_gradient(self):
# Arrange
target_file = "Tests/images/linear_gradient.png"
2017-01-29 19:17:31 +03:00
for mode in ["L", "P"]:
# Act
im = Image.linear_gradient(mode)
# Assert
assert im.size == (256, 256)
assert im.mode == mode
assert im.getpixel((0, 0)) == 0
assert im.getpixel((255, 255)) == 255
2019-11-25 23:03:23 +03:00
with Image.open(target_file) as target:
target = target.convert(mode)
assert_image_equal(im, target)
2017-01-29 19:17:31 +03:00
2017-01-29 19:44:24 +03:00
def test_radial_gradient_wrong_mode(self):
# Arrange
wrong_mode = "RGB"
# Act / Assert
with pytest.raises(ValueError):
Image.radial_gradient(wrong_mode)
2017-01-29 19:44:24 +03:00
def test_radial_gradient(self):
# Arrange
target_file = "Tests/images/radial_gradient.png"
2017-01-29 19:44:24 +03:00
for mode in ["L", "P"]:
# Act
im = Image.radial_gradient(mode)
# Assert
assert im.size == (256, 256)
assert im.mode == mode
assert im.getpixel((0, 0)) == 255
assert im.getpixel((128, 128)) == 0
2019-11-25 23:03:23 +03:00
with Image.open(target_file) as target:
target = target.convert(mode)
assert_image_equal(im, target)
2017-01-29 19:44:24 +03:00
2017-09-04 13:32:15 +03:00
def test_register_extensions(self):
test_format = "a"
exts = ["b", "c"]
for ext in exts:
Image.register_extension(test_format, ext)
ext_individual = Image.EXTENSION.copy()
for ext in exts:
del Image.EXTENSION[ext]
Image.register_extensions(test_format, exts)
ext_multiple = Image.EXTENSION.copy()
for ext in exts:
del Image.EXTENSION[ext]
assert ext_individual == ext_multiple
2017-09-04 13:32:15 +03:00
2017-09-01 13:36:51 +03:00
def test_remap_palette(self):
# Test illegal image mode
Improve handling of file resources Follow Python's file object semantics. User code is responsible for closing resources (usually through a context manager) in a deterministic way. To achieve this, remove __del__ functions. These functions used to closed open file handlers in an attempt to silence Python ResourceWarnings. However, using __del__ has the following drawbacks: - __del__ isn't called until the object's reference count reaches 0. Therefore, resource handlers remain open or in use longer than necessary. - The __del__ method isn't guaranteed to execute on system exit. See the Python documentation: https://docs.python.org/3/reference/datamodel.html#object.__del__ > It is not guaranteed that __del__() methods are called for objects > that still exist when the interpreter exits. - Exceptions that occur inside __del__ are ignored instead of raised. This has the potential of hiding bugs. This is also in the Python documentation: > Warning: Due to the precarious circumstances under which __del__() > methods are invoked, exceptions that occur during their execution > are ignored, and a warning is printed to sys.stderr instead. Instead, always close resource handlers when they are no longer in use. This will close the file handler at a specified point in the user's code and not wait until the interpreter chooses to. It is always guaranteed to run. And, if an exception occurs while closing the file handler, the bug will not be ignored. Now, when code receives a ResourceWarning, it will highlight an area that is mishandling resources. It should not simply be silenced, but fixed by closing resources with a context manager. All warnings that were emitted during tests have been cleaned up. To enable warnings, I passed the `-Wa` CLI option to Python. This exposed some mishandling of resources in ImageFile.__init__() and SpiderImagePlugin.loadImageSeries(), they too were fixed.
2019-05-25 19:30:58 +03:00
with hopper() as im:
with pytest.raises(ValueError):
im.remap_palette(None)
2017-09-01 13:36:51 +03:00
def test__new(self):
2019-06-13 18:54:24 +03:00
im = hopper("RGB")
im_p = hopper("P")
2019-06-13 18:54:24 +03:00
blank_p = Image.new("P", (10, 10))
blank_pa = Image.new("PA", (10, 10))
blank_p.palette = None
blank_pa.palette = None
2017-09-04 13:32:15 +03:00
def _make_new(base_image, im, palette_result=None):
new_im = base_image._new(im)
assert new_im.mode == im.mode
assert new_im.size == im.size
assert new_im.info == base_image.info
if palette_result is not None:
assert new_im.palette.tobytes() == palette_result.tobytes()
else:
assert new_im.palette is None
2017-09-04 13:32:15 +03:00
_make_new(im, im_p, im_p.palette)
_make_new(im_p, im, None)
_make_new(im, blank_p, ImagePalette.ImagePalette())
_make_new(im, blank_pa, ImagePalette.ImagePalette())
2017-09-04 13:32:15 +03:00
def test_p_from_rgb_rgba(self):
for mode, color in [
2019-06-13 18:54:24 +03:00
("RGB", "#DDEEFF"),
("RGB", (221, 238, 255)),
2019-06-13 18:54:24 +03:00
("RGBA", (221, 238, 255, 255)),
]:
im = Image.new("P", (100, 100), color)
expected = Image.new(mode, (100, 100), color)
assert_image_equal(im.convert(mode), expected)
2020-06-21 15:17:18 +03:00
def test_showxv_deprecation(self):
class TestViewer(ImageShow.Viewer):
def show_image(self, image, **options):
return True
viewer = TestViewer()
ImageShow.register(viewer, -1)
im = Image.new("RGB", (50, 50), "white")
with pytest.warns(DeprecationWarning):
Image._showxv(im)
# Restore original state
ImageShow._viewers.pop(0)
2020-02-23 00:03:01 +03:00
def test_no_resource_warning_on_save(self, tmp_path):
# https://github.com/python-pillow/Pillow/issues/835
# Arrange
2019-06-13 18:54:24 +03:00
test_file = "Tests/images/hopper.png"
2020-02-23 00:03:01 +03:00
temp_file = str(tmp_path / "temp.jpg")
# Act/Assert
with Image.open(test_file) as im:
pytest.warns(None, im.save, temp_file)
def test_load_on_nonexclusive_multiframe(self):
with open("Tests/images/frozenpond.mpo", "rb") as fp:
2019-06-13 18:54:24 +03:00
def act(fp):
im = Image.open(fp)
im.load()
2019-06-13 18:54:24 +03:00
act(fp)
with Image.open(fp) as im:
im.load()
assert not fp.closed
2020-03-31 09:25:26 +03:00
@pytest.mark.parametrize(
"test_module", [PIL, Image],
)
def test_pillow_version(self, test_module):
with pytest.warns(DeprecationWarning):
2020-03-31 09:25:26 +03:00
assert test_module.PILLOW_VERSION == PIL.__version__
2020-03-31 09:41:47 +03:00
with pytest.warns(DeprecationWarning):
2020-03-31 09:25:26 +03:00
str(test_module.PILLOW_VERSION)
with pytest.warns(DeprecationWarning):
2020-03-31 09:25:26 +03:00
assert int(test_module.PILLOW_VERSION[0]) >= 7
2020-03-31 09:41:47 +03:00
with pytest.warns(DeprecationWarning):
2020-03-31 09:25:26 +03:00
assert test_module.PILLOW_VERSION < "9.9.0"
2020-03-31 09:41:47 +03:00
with pytest.warns(DeprecationWarning):
2020-03-31 09:25:26 +03:00
assert test_module.PILLOW_VERSION <= "9.9.0"
2020-03-31 09:41:47 +03:00
with pytest.warns(DeprecationWarning):
2020-03-31 09:25:26 +03:00
assert test_module.PILLOW_VERSION != "7.0.0"
2020-03-31 09:41:47 +03:00
with pytest.warns(DeprecationWarning):
2020-03-31 09:25:26 +03:00
assert test_module.PILLOW_VERSION >= "7.0.0"
2020-03-31 09:41:47 +03:00
with pytest.warns(DeprecationWarning):
2020-03-31 09:25:26 +03:00
assert test_module.PILLOW_VERSION > "7.0.0"
2020-03-31 09:41:47 +03:00
2019-09-30 11:45:43 +03:00
def test_overrun(self):
2020-03-09 23:21:40 +03:00
""" For overrun completeness, test as:
2020-04-01 10:52:21 +03:00
valgrind pytest -qq Tests/test_image.py::TestImage::test_overrun | grep decode.c
2020-03-09 23:21:40 +03:00
"""
2019-12-21 10:38:22 +03:00
for file in [
"fli_overrun.bin",
"sgi_overrun.bin",
2020-01-01 06:16:45 +03:00
"sgi_overrun_expandrow.bin",
"sgi_overrun_expandrow2.bin",
2019-12-21 10:38:22 +03:00
"pcx_overrun.bin",
"pcx_overrun2.bin",
2020-03-09 23:21:40 +03:00
"01r_00.pcx",
2019-12-21 10:38:22 +03:00
]:
Improve handling of file resources Follow Python's file object semantics. User code is responsible for closing resources (usually through a context manager) in a deterministic way. To achieve this, remove __del__ functions. These functions used to closed open file handlers in an attempt to silence Python ResourceWarnings. However, using __del__ has the following drawbacks: - __del__ isn't called until the object's reference count reaches 0. Therefore, resource handlers remain open or in use longer than necessary. - The __del__ method isn't guaranteed to execute on system exit. See the Python documentation: https://docs.python.org/3/reference/datamodel.html#object.__del__ > It is not guaranteed that __del__() methods are called for objects > that still exist when the interpreter exits. - Exceptions that occur inside __del__ are ignored instead of raised. This has the potential of hiding bugs. This is also in the Python documentation: > Warning: Due to the precarious circumstances under which __del__() > methods are invoked, exceptions that occur during their execution > are ignored, and a warning is printed to sys.stderr instead. Instead, always close resource handlers when they are no longer in use. This will close the file handler at a specified point in the user's code and not wait until the interpreter chooses to. It is always guaranteed to run. And, if an exception occurs while closing the file handler, the bug will not be ignored. Now, when code receives a ResourceWarning, it will highlight an area that is mishandling resources. It should not simply be silenced, but fixed by closing resources with a context manager. All warnings that were emitted during tests have been cleaned up. To enable warnings, I passed the `-Wa` CLI option to Python. This exposed some mishandling of resources in ImageFile.__init__() and SpiderImagePlugin.loadImageSeries(), they too were fixed.
2019-05-25 19:30:58 +03:00
with Image.open(os.path.join("Tests/images", file)) as im:
try:
im.load()
2020-02-23 00:03:01 +03:00
assert False
except OSError as e:
assert str(e) == "buffer overrun when reading image file"
2019-09-30 11:45:43 +03:00
2020-01-02 07:23:36 +03:00
with Image.open("Tests/images/fli_overrun2.bin") as im:
try:
im.seek(1)
2020-02-23 00:03:01 +03:00
assert False
2020-01-02 07:23:36 +03:00
except OSError as e:
assert str(e) == "buffer overrun when reading image file"
2020-01-02 07:23:36 +03:00
2020-05-25 19:51:30 +03:00
def test_show_deprecation(self, monkeypatch):
monkeypatch.setattr(Image, "_show", lambda *args, **kwargs: None)
im = Image.new("RGB", (50, 50), "white")
with pytest.warns(None) as raised:
im.show()
assert not raised
with pytest.warns(DeprecationWarning):
im.show(command="mock")
class MockEncoder:
2017-04-20 14:14:23 +03:00
pass
2017-03-11 20:03:09 +03:00
def mock_encode(*args):
encoder = MockEncoder()
encoder.args = args
return encoder
2017-04-20 14:14:23 +03:00
2020-02-23 00:03:01 +03:00
class TestRegistry:
2017-03-11 20:03:09 +03:00
def test_encode_registry(self):
2019-06-13 18:54:24 +03:00
Image.register_encoder("MOCK", mock_encode)
assert "MOCK" in Image.ENCODERS
2017-03-11 20:03:09 +03:00
2019-06-13 18:54:24 +03:00
enc = Image._getencoder("RGB", "MOCK", ("args",), extra=("extra",))
2017-03-11 20:03:09 +03:00
assert isinstance(enc, MockEncoder)
assert enc.args == ("RGB", "args", "extra")
2017-03-11 20:03:09 +03:00
def test_encode_registry_fail(self):
with pytest.raises(OSError):
Image._getencoder("RGB", "DoesNotExist", ("args",), extra=("extra",))