Pillow/docs/reference/ImageMath.rst

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

170 lines
5.7 KiB
ReStructuredText
Raw Normal View History

2013-10-13 04:40:14 +04:00
.. py:module:: PIL.ImageMath
.. py:currentmodule:: PIL.ImageMath
:py:mod:`~PIL.ImageMath` Module
===============================
2013-10-13 04:40:14 +04:00
The :py:mod:`~PIL.ImageMath` module can be used to evaluate “image expressions”, that
can take a number of images and generate a result.
2024-03-25 21:50:08 +03:00
:py:mod:`~PIL.ImageMath` only supports single-layer images. To process multi-band
images, use the :py:meth:`~PIL.Image.Image.split` method or :py:func:`~PIL.Image.merge`
function.
2013-10-13 04:40:14 +04:00
Example: Using the :py:mod:`~PIL.ImageMath` module
--------------------------------------------------
::
2013-10-13 04:40:14 +04:00
from PIL import Image, ImageMath
2013-10-13 04:40:14 +04:00
2021-02-25 15:41:31 +03:00
with Image.open("image1.jpg") as im1:
with Image.open("image2.jpg") as im2:
out = ImageMath.lambda_eval(
lambda args: args["convert"](args["min"](args["a"], args["b"]), 'L'),
a=im1,
b=im2
)
out = ImageMath.unsafe_eval(
"convert(min(a, b), 'L')",
a=im1,
b=im2
)
.. py:function:: lambda_eval(expression, environment)
Returns the result of an image function.
:param expression: A function that receives a dictionary.
:param options: Values to add to the function's dictionary, mapping image
names to Image instances. You can use one or more keyword
arguments instead of a dictionary, as shown in the above
example. Note that the names must be valid Python
identifiers.
:return: An image, an integer value, a floating point value,
or a pixel tuple, depending on the expression.
2013-10-13 04:40:14 +04:00
.. py:function:: unsafe_eval(expression, environment)
2013-10-13 04:40:14 +04:00
2024-03-25 22:16:09 +03:00
Evaluates an image expression.
.. danger::
This uses Python's ``eval()`` function to process the expression string,
and carries the security risks of doing so. It is not
recommended to process expressions without considering this.
:py:meth:`lambda_eval` is a more secure alternative.
2013-10-13 04:40:14 +04:00
2024-03-25 21:50:08 +03:00
:py:mod:`~PIL.ImageMath` only supports single-layer images. To process multi-band
images, use the :py:meth:`~PIL.Image.Image.split` method or
:py:func:`~PIL.Image.merge` function.
2013-10-13 04:40:14 +04:00
:param expression: A string which uses the standard Python expression
syntax. In addition to the standard operators, you can
also use the functions described below.
:param options: Values to add to the function's dictionary, mapping image
names to Image instances. You can use one or more keyword
arguments instead of a dictionary, as shown in the above
example. Note that the names must be valid Python
identifiers.
2013-10-13 04:40:14 +04:00
:return: An image, an integer value, a floating point value,
or a pixel tuple, depending on the expression.
Expression syntax
-----------------
2024-03-25 22:16:09 +03:00
* :py:meth:`lambda_eval` expressions are functions that receive a dictionary
containing images and operators.
2024-03-25 22:16:09 +03:00
* :py:meth:`unsafe_eval` expressions are standard Python expressions,
but theyre evaluated in a non-standard environment.
2024-03-25 22:16:09 +03:00
.. danger::
:py:meth:`unsafe_eval` uses Python's ``eval()`` function to process the
expression string, and carries the security risks of doing so.
It is not recommended to process expressions without considering this.
:py:meth:`lambda_eval` is a more secure alternative.
2013-10-13 04:40:14 +04:00
Standard Operators
^^^^^^^^^^^^^^^^^^
You can use standard arithmetical operators for addition (+), subtraction (-),
multiplication (*), and division (/).
The module also supports unary minus (-), modulo (%), and power (**) operators.
Note that all operations are done with 32-bit integers or 32-bit floating
point values, as necessary. For example, if you add two 8-bit images, the
result will be a 32-bit integer image. If you add a floating point constant to
an 8-bit image, the result will be a 32-bit floating point image.
You can force conversion using the ``convert()``, ``float()``, and ``int()``
functions described below.
2013-10-13 04:40:14 +04:00
Bitwise Operators
^^^^^^^^^^^^^^^^^
The module also provides operations that operate on individual bits. This
includes and (&), or (|), and exclusive or (^). You can also invert (~) all
pixel bits.
Note that the operands are converted to 32-bit signed integers before the
bitwise operation is applied. This means that youll get negative values if
2023-10-19 11:12:01 +03:00
you invert an ordinary grayscale image. You can use the and (&) operator to
2013-10-13 04:40:14 +04:00
mask off unwanted bits.
Bitwise operators dont work on floating point images.
Logical Operators
^^^^^^^^^^^^^^^^^
Logical operators like ``and``, ``or``, and ``not`` work
2013-10-13 04:40:14 +04:00
on entire images, rather than individual pixels.
An empty image (all pixels zero) is treated as false. All other images are
treated as true.
Note that ``and`` and ``or`` return the last evaluated operand,
2013-10-13 04:40:14 +04:00
while not always returns a boolean value.
Built-in Functions
^^^^^^^^^^^^^^^^^^
These functions are applied to each individual pixel.
.. py:currentmodule:: None
.. py:function:: abs(image)
:noindex:
2013-10-13 04:40:14 +04:00
Absolute value.
.. py:function:: convert(image, mode)
:noindex:
2013-10-13 04:40:14 +04:00
Convert image to the given mode. The mode must be given as a string
constant.
.. py:function:: float(image)
:noindex:
2013-10-13 04:40:14 +04:00
Convert image to 32-bit floating point. This is equivalent to
convert(image, “F”).
.. py:function:: int(image)
:noindex:
2013-10-13 04:40:14 +04:00
Convert image to 32-bit integer. This is equivalent to convert(image, “I”).
Note that 1-bit and 8-bit images are automatically converted to 32-bit
integers if necessary to get a correct result.
.. py:function:: max(image1, image2)
:noindex:
2013-10-13 04:40:14 +04:00
Maximum value.
.. py:function:: min(image1, image2)
:noindex:
2013-10-13 04:40:14 +04:00
Minimum value.