mirror of
https://github.com/python-pillow/Pillow.git
synced 2025-01-12 10:16:17 +03:00
290 lines
6.5 KiB
Python
290 lines
6.5 KiB
Python
|
#
|
||
|
# The Python Imaging Library.
|
||
|
# $Id$
|
||
|
#
|
||
|
# standard filters
|
||
|
#
|
||
|
# History:
|
||
|
# 1995-11-27 fl Created
|
||
|
# 2002-06-08 fl Added rank and mode filters
|
||
|
# 2003-09-15 fl Fixed rank calculation in rank filter; added expand call
|
||
|
#
|
||
|
# Copyright (c) 1997-2003 by Secret Labs AB.
|
||
|
# Copyright (c) 1995-2002 by Fredrik Lundh.
|
||
|
#
|
||
|
# See the README file for information on usage and redistribution.
|
||
|
#
|
||
|
|
||
|
class Filter:
|
||
|
pass
|
||
|
|
||
|
##
|
||
|
# Convolution filter kernel.
|
||
|
|
||
|
class Kernel(Filter):
|
||
|
|
||
|
##
|
||
|
# Create a convolution kernel. The current version only
|
||
|
# supports 3x3 and 5x5 integer and floating point kernels.
|
||
|
# <p>
|
||
|
# In the current version, kernels can only be applied to
|
||
|
# "L" and "RGB" images.
|
||
|
#
|
||
|
# @def __init__(size, kernel, **options)
|
||
|
# @param size Kernel size, given as (width, height). In
|
||
|
# the current version, this must be (3,3) or (5,5).
|
||
|
# @param kernel A sequence containing kernel weights.
|
||
|
# @param **options Optional keyword arguments.
|
||
|
# @keyparam scale Scale factor. If given, the result for each
|
||
|
# pixel is divided by this value. The default is the sum
|
||
|
# of the kernel weights.
|
||
|
# @keyparam offset Offset. If given, this value is added to the
|
||
|
# result, after it has been divided by the scale factor.
|
||
|
|
||
|
def __init__(self, size, kernel, scale=None, offset=0):
|
||
|
if scale is None:
|
||
|
# default scale is sum of kernel
|
||
|
scale = reduce(lambda a,b: a+b, kernel)
|
||
|
if size[0] * size[1] != len(kernel):
|
||
|
raise ValueError("not enough coefficients in kernel")
|
||
|
self.filterargs = size, scale, offset, kernel
|
||
|
|
||
|
def filter(self, image):
|
||
|
if image.mode == "P":
|
||
|
raise ValueError("cannot filter palette images")
|
||
|
return apply(image.filter, self.filterargs)
|
||
|
|
||
|
class BuiltinFilter(Kernel):
|
||
|
def __init__(self):
|
||
|
pass
|
||
|
|
||
|
##
|
||
|
# Rank filter.
|
||
|
|
||
|
class RankFilter(Filter):
|
||
|
name = "Rank"
|
||
|
|
||
|
##
|
||
|
# Create a rank filter. The rank filter sorts all pixels in
|
||
|
# a window of the given size, and returns the rank'th value.
|
||
|
#
|
||
|
# @param size The kernel size, in pixels.
|
||
|
# @param rank What pixel value to pick. Use 0 for a min filter,
|
||
|
# size*size/2 for a median filter, size*size-1 for a max filter,
|
||
|
# etc.
|
||
|
|
||
|
def __init__(self, size, rank):
|
||
|
self.size = size
|
||
|
self.rank = rank
|
||
|
|
||
|
def filter(self, image):
|
||
|
if image.mode == "P":
|
||
|
raise ValueError("cannot filter palette images")
|
||
|
image = image.expand(self.size/2, self.size/2)
|
||
|
return image.rankfilter(self.size, self.rank)
|
||
|
|
||
|
##
|
||
|
# Median filter. Picks the median pixel value in a window with the
|
||
|
# given size.
|
||
|
|
||
|
class MedianFilter(RankFilter):
|
||
|
name = "Median"
|
||
|
|
||
|
##
|
||
|
# Create a median filter.
|
||
|
#
|
||
|
# @param size The kernel size, in pixels.
|
||
|
|
||
|
def __init__(self, size=3):
|
||
|
self.size = size
|
||
|
self.rank = size*size/2
|
||
|
|
||
|
##
|
||
|
# Min filter. Picks the lowest pixel value in a window with the given
|
||
|
# size.
|
||
|
|
||
|
class MinFilter(RankFilter):
|
||
|
name = "Min"
|
||
|
|
||
|
##
|
||
|
# Create a min filter.
|
||
|
#
|
||
|
# @param size The kernel size, in pixels.
|
||
|
|
||
|
def __init__(self, size=3):
|
||
|
self.size = size
|
||
|
self.rank = 0
|
||
|
|
||
|
##
|
||
|
# Max filter. Picks the largest pixel value in a window with the
|
||
|
# given size.
|
||
|
|
||
|
class MaxFilter(RankFilter):
|
||
|
name = "Max"
|
||
|
|
||
|
##
|
||
|
# Create a max filter.
|
||
|
#
|
||
|
# @param size The kernel size, in pixels.
|
||
|
|
||
|
def __init__(self, size=3):
|
||
|
self.size = size
|
||
|
self.rank = size*size-1
|
||
|
|
||
|
##
|
||
|
# Mode filter. Picks the most frequent pixel value in a box with the
|
||
|
# given size. Pixel values that occur only once or twice are ignored;
|
||
|
# if no pixel value occurs more than twice, the original pixel value
|
||
|
# is preserved.
|
||
|
|
||
|
class ModeFilter(Filter):
|
||
|
name = "Mode"
|
||
|
|
||
|
##
|
||
|
# Create a mode filter.
|
||
|
#
|
||
|
# @param size The kernel size, in pixels.
|
||
|
|
||
|
def __init__(self, size=3):
|
||
|
self.size = size
|
||
|
def filter(self, image):
|
||
|
return image.modefilter(self.size)
|
||
|
|
||
|
##
|
||
|
# Gaussian blur filter.
|
||
|
|
||
|
class GaussianBlur(Filter):
|
||
|
name = "GaussianBlur"
|
||
|
|
||
|
def __init__(self, radius=2):
|
||
|
self.radius = 2
|
||
|
def filter(self, image):
|
||
|
return image.gaussian_blur(self.radius)
|
||
|
|
||
|
##
|
||
|
# Unsharp mask filter.
|
||
|
|
||
|
class UnsharpMask(Filter):
|
||
|
name = "UnsharpMask"
|
||
|
|
||
|
def __init__(self, radius=2, percent=150, threshold=3):
|
||
|
self.radius = 2
|
||
|
self.percent = percent
|
||
|
self.threshold = threshold
|
||
|
def filter(self, image):
|
||
|
return image.unsharp_mask(self.radius, self.percent, self.threshold)
|
||
|
|
||
|
##
|
||
|
# Simple blur filter.
|
||
|
|
||
|
class BLUR(BuiltinFilter):
|
||
|
name = "Blur"
|
||
|
filterargs = (5, 5), 16, 0, (
|
||
|
1, 1, 1, 1, 1,
|
||
|
1, 0, 0, 0, 1,
|
||
|
1, 0, 0, 0, 1,
|
||
|
1, 0, 0, 0, 1,
|
||
|
1, 1, 1, 1, 1
|
||
|
)
|
||
|
|
||
|
##
|
||
|
# Simple contour filter.
|
||
|
|
||
|
class CONTOUR(BuiltinFilter):
|
||
|
name = "Contour"
|
||
|
filterargs = (3, 3), 1, 255, (
|
||
|
-1, -1, -1,
|
||
|
-1, 8, -1,
|
||
|
-1, -1, -1
|
||
|
)
|
||
|
|
||
|
##
|
||
|
# Simple detail filter.
|
||
|
|
||
|
class DETAIL(BuiltinFilter):
|
||
|
name = "Detail"
|
||
|
filterargs = (3, 3), 6, 0, (
|
||
|
0, -1, 0,
|
||
|
-1, 10, -1,
|
||
|
0, -1, 0
|
||
|
)
|
||
|
|
||
|
##
|
||
|
# Simple edge enhancement filter.
|
||
|
|
||
|
class EDGE_ENHANCE(BuiltinFilter):
|
||
|
name = "Edge-enhance"
|
||
|
filterargs = (3, 3), 2, 0, (
|
||
|
-1, -1, -1,
|
||
|
-1, 10, -1,
|
||
|
-1, -1, -1
|
||
|
)
|
||
|
|
||
|
##
|
||
|
# Simple stronger edge enhancement filter.
|
||
|
|
||
|
class EDGE_ENHANCE_MORE(BuiltinFilter):
|
||
|
name = "Edge-enhance More"
|
||
|
filterargs = (3, 3), 1, 0, (
|
||
|
-1, -1, -1,
|
||
|
-1, 9, -1,
|
||
|
-1, -1, -1
|
||
|
)
|
||
|
|
||
|
##
|
||
|
# Simple embossing filter.
|
||
|
|
||
|
class EMBOSS(BuiltinFilter):
|
||
|
name = "Emboss"
|
||
|
filterargs = (3, 3), 1, 128, (
|
||
|
-1, 0, 0,
|
||
|
0, 1, 0,
|
||
|
0, 0, 0
|
||
|
)
|
||
|
|
||
|
##
|
||
|
# Simple edge-finding filter.
|
||
|
|
||
|
class FIND_EDGES(BuiltinFilter):
|
||
|
name = "Find Edges"
|
||
|
filterargs = (3, 3), 1, 0, (
|
||
|
-1, -1, -1,
|
||
|
-1, 8, -1,
|
||
|
-1, -1, -1
|
||
|
)
|
||
|
|
||
|
##
|
||
|
# Simple smoothing filter.
|
||
|
|
||
|
class SMOOTH(BuiltinFilter):
|
||
|
name = "Smooth"
|
||
|
filterargs = (3, 3), 13, 0, (
|
||
|
1, 1, 1,
|
||
|
1, 5, 1,
|
||
|
1, 1, 1
|
||
|
)
|
||
|
|
||
|
##
|
||
|
# Simple stronger smoothing filter.
|
||
|
|
||
|
class SMOOTH_MORE(BuiltinFilter):
|
||
|
name = "Smooth More"
|
||
|
filterargs = (5, 5), 100, 0, (
|
||
|
1, 1, 1, 1, 1,
|
||
|
1, 5, 5, 5, 1,
|
||
|
1, 5, 44, 5, 1,
|
||
|
1, 5, 5, 5, 1,
|
||
|
1, 1, 1, 1, 1
|
||
|
)
|
||
|
|
||
|
##
|
||
|
# Simple sharpening filter.
|
||
|
|
||
|
class SHARPEN(BuiltinFilter):
|
||
|
name = "Sharpen"
|
||
|
filterargs = (3, 3), 16, 0, (
|
||
|
-2, -2, -2,
|
||
|
-2, 32, -2,
|
||
|
-2, -2, -2
|
||
|
)
|