mirror of
https://github.com/python-pillow/Pillow.git
synced 2025-01-26 17:24:31 +03:00
Merge pull request #1881 from uploadcare/fpi-resample
Fixed point integer resample
This commit is contained in:
commit
0cfcc9e6ed
|
@ -150,5 +150,41 @@ class TestImagingCoreResampleAccuracy(PillowTestCase):
|
|||
self.make_sample(data, (12, 12)))
|
||||
|
||||
|
||||
class CoreResampleConsistencyTest(PillowTestCase):
|
||||
def make_case(self, mode, fill):
|
||||
im = Image.new(mode, (512, 9), fill)
|
||||
return (im.resize((9, 512), Image.LANCZOS), im.load()[0, 0])
|
||||
|
||||
def run_case(self, case):
|
||||
channel, color = case
|
||||
px = channel.load()
|
||||
for x in range(channel.size[0]):
|
||||
for y in range(channel.size[1]):
|
||||
if px[x, y] != color:
|
||||
message = "{} != {} for pixel {}".format(
|
||||
px[x, y], color, (x, y))
|
||||
self.assertEqual(px[x, y], color, message)
|
||||
|
||||
def test_8u(self):
|
||||
im, color = self.make_case('RGB', (0, 64, 255))
|
||||
r, g, b = im.split()
|
||||
self.run_case((r, color[0]))
|
||||
self.run_case((g, color[1]))
|
||||
self.run_case((b, color[2]))
|
||||
self.run_case(self.make_case('L', 12))
|
||||
|
||||
def test_32i(self):
|
||||
self.run_case(self.make_case('I', 12))
|
||||
self.run_case(self.make_case('I', 0x7fffffff))
|
||||
self.run_case(self.make_case('I', -12))
|
||||
self.run_case(self.make_case('I', -1 << 31))
|
||||
|
||||
def test_32f(self):
|
||||
self.run_case(self.make_case('F', 1))
|
||||
self.run_case(self.make_case('F', 3.40282306074e+38))
|
||||
self.run_case(self.make_case('F', 1.175494e-38))
|
||||
self.run_case(self.make_case('F', 1.192093e-07))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
|
|
@ -1,28 +1,17 @@
|
|||
/*
|
||||
* The Python Imaging Library
|
||||
* $Id$
|
||||
*
|
||||
* Pillow image resampling support
|
||||
*
|
||||
* history:
|
||||
* 2002-03-09 fl Created (for PIL 1.1.3)
|
||||
* 2002-03-10 fl Added support for mode "F"
|
||||
*
|
||||
* Copyright (c) 1997-2002 by Secret Labs AB
|
||||
*
|
||||
* See the README file for information on usage and redistribution.
|
||||
*/
|
||||
|
||||
#include "Imaging.h"
|
||||
|
||||
#include <math.h>
|
||||
|
||||
|
||||
#define ROUND_UP(f) ((int) ((f) >= 0.0 ? (f) + 0.5F : (f) - 0.5F))
|
||||
|
||||
|
||||
struct filter {
|
||||
float (*filter)(float x);
|
||||
float support;
|
||||
double (*filter)(double x);
|
||||
double support;
|
||||
};
|
||||
|
||||
static inline float sinc_filter(float x)
|
||||
static inline double sinc_filter(double x)
|
||||
{
|
||||
if (x == 0.0)
|
||||
return 1.0;
|
||||
|
@ -30,7 +19,7 @@ static inline float sinc_filter(float x)
|
|||
return sin(x) / x;
|
||||
}
|
||||
|
||||
static inline float lanczos_filter(float x)
|
||||
static inline double lanczos_filter(double x)
|
||||
{
|
||||
/* truncated sinc */
|
||||
if (-3.0 <= x && x < 3.0)
|
||||
|
@ -38,9 +27,7 @@ static inline float lanczos_filter(float x)
|
|||
return 0.0;
|
||||
}
|
||||
|
||||
static struct filter LANCZOS = { lanczos_filter, 3.0 };
|
||||
|
||||
static inline float bilinear_filter(float x)
|
||||
static inline double bilinear_filter(double x)
|
||||
{
|
||||
if (x < 0.0)
|
||||
x = -x;
|
||||
|
@ -49,9 +36,7 @@ static inline float bilinear_filter(float x)
|
|||
return 0.0;
|
||||
}
|
||||
|
||||
static struct filter BILINEAR = { bilinear_filter, 1.0 };
|
||||
|
||||
static inline float bicubic_filter(float x)
|
||||
static inline double bicubic_filter(double x)
|
||||
{
|
||||
/* https://en.wikipedia.org/wiki/Bicubic_interpolation#Bicubic_convolution_algorithm */
|
||||
#define a -0.5
|
||||
|
@ -65,46 +50,299 @@ static inline float bicubic_filter(float x)
|
|||
#undef a
|
||||
}
|
||||
|
||||
static struct filter LANCZOS = { lanczos_filter, 3.0 };
|
||||
static struct filter BILINEAR = { bilinear_filter, 1.0 };
|
||||
static struct filter BICUBIC = { bicubic_filter, 2.0 };
|
||||
|
||||
|
||||
static inline UINT8 clip8(float in)
|
||||
|
||||
/* 8 bits for result. Filter can have negative areas.
|
||||
In one cases the sum of the coefficients will be negative,
|
||||
in the other it will be more than 1.0. That is why we need
|
||||
two extra bits for overflow and int type. */
|
||||
#define PRECISION_BITS (32 - 8 - 2)
|
||||
|
||||
|
||||
static inline UINT8 clip8(int in)
|
||||
{
|
||||
int out = (int) in;
|
||||
if (out >= 255)
|
||||
if (in >= (1 << PRECISION_BITS << 8))
|
||||
return 255;
|
||||
if (out <= 0)
|
||||
if (in <= 0)
|
||||
return 0;
|
||||
return (UINT8) out;
|
||||
return (UINT8) (in >> PRECISION_BITS);
|
||||
}
|
||||
|
||||
|
||||
/* This is work around bug in GCC prior 4.9 in 64-bit mode.
|
||||
GCC generates code with partial dependency which 3 times slower.
|
||||
See: http://stackoverflow.com/a/26588074/253146 */
|
||||
#if defined(__x86_64__) && defined(__SSE__) && ! defined(__NO_INLINE__) && \
|
||||
! defined(__clang__) && defined(GCC_VERSION) && (GCC_VERSION < 40900)
|
||||
static float __attribute__((always_inline)) i2f(int v) {
|
||||
float x;
|
||||
__asm__("xorps %0, %0; cvtsi2ss %1, %0" : "=X"(x) : "r"(v) );
|
||||
return x;
|
||||
int
|
||||
ImagingPrecompute(int inSize, int outSize, struct filter *filterp,
|
||||
int **xboundsp, double **kkp) {
|
||||
double support, scale, filterscale;
|
||||
double center, ww, ss;
|
||||
int xx, x, kmax, xmin, xmax;
|
||||
int *xbounds;
|
||||
double *kk, *k;
|
||||
|
||||
/* prepare for horizontal stretch */
|
||||
filterscale = scale = (double) inSize / outSize;
|
||||
if (filterscale < 1.0) {
|
||||
filterscale = 1.0;
|
||||
}
|
||||
|
||||
/* determine support size (length of resampling filter) */
|
||||
support = filterp->support * filterscale;
|
||||
|
||||
/* maximum number of coofs */
|
||||
kmax = (int) ceil(support) * 2 + 1;
|
||||
|
||||
// check for overflow
|
||||
if (outSize > INT_MAX / (kmax * sizeof(double)))
|
||||
return 0;
|
||||
|
||||
// sizeof(double) should be greater than 0 as well
|
||||
if (outSize > INT_MAX / (2 * sizeof(double)))
|
||||
return 0;
|
||||
|
||||
/* coefficient buffer */
|
||||
kk = calloc(outSize * kmax, sizeof(double));
|
||||
if ( ! kk)
|
||||
return 0;
|
||||
|
||||
xbounds = calloc(outSize * 2, sizeof(int));
|
||||
if ( ! xbounds) {
|
||||
free(kk);
|
||||
return 0;
|
||||
}
|
||||
|
||||
for (xx = 0; xx < outSize; xx++) {
|
||||
center = (xx + 0.5) * scale;
|
||||
ww = 0.0;
|
||||
ss = 1.0 / filterscale;
|
||||
xmin = (int) floor(center - support);
|
||||
if (xmin < 0)
|
||||
xmin = 0;
|
||||
xmax = (int) ceil(center + support);
|
||||
if (xmax > inSize)
|
||||
xmax = inSize;
|
||||
xmax -= xmin;
|
||||
k = &kk[xx * kmax];
|
||||
for (x = 0; x < xmax; x++) {
|
||||
double w = filterp->filter((x + xmin - center + 0.5) * ss);
|
||||
k[x] = w;
|
||||
ww += w;
|
||||
}
|
||||
for (x = 0; x < xmax; x++) {
|
||||
if (ww != 0.0)
|
||||
k[x] /= ww;
|
||||
}
|
||||
xbounds[xx * 2 + 0] = xmin;
|
||||
xbounds[xx * 2 + 1] = xmax;
|
||||
}
|
||||
*xboundsp = xbounds;
|
||||
*kkp = kk;
|
||||
return kmax;
|
||||
}
|
||||
#else
|
||||
static float inline i2f(int v) { return (float) v; }
|
||||
#endif
|
||||
|
||||
|
||||
Imaging
|
||||
ImagingResampleHorizontal(Imaging imIn, int xsize, int filter)
|
||||
ImagingResampleHorizontal_8bpc(Imaging imIn, int xsize, struct filter *filterp)
|
||||
{
|
||||
ImagingSectionCookie cookie;
|
||||
Imaging imOut;
|
||||
struct filter *filterp;
|
||||
float support, scale, filterscale;
|
||||
float center, ww, ss, ss0, ss1, ss2, ss3;
|
||||
int ss0, ss1, ss2, ss3;
|
||||
int xx, yy, x, kmax, xmin, xmax;
|
||||
int *xbounds;
|
||||
float *k, *kk;
|
||||
int *k, *kk;
|
||||
double *prekk;
|
||||
|
||||
|
||||
kmax = ImagingPrecompute(imIn->xsize, xsize, filterp, &xbounds, &prekk);
|
||||
if ( ! kmax) {
|
||||
return (Imaging) ImagingError_MemoryError();
|
||||
}
|
||||
|
||||
kk = calloc(xsize * kmax, sizeof(int));
|
||||
if ( ! kk) {
|
||||
free(xbounds);
|
||||
free(prekk);
|
||||
return (Imaging) ImagingError_MemoryError();
|
||||
}
|
||||
|
||||
for (x = 0; x < xsize * kmax; x++) {
|
||||
kk[x] = (int) (0.5 + prekk[x] * (1 << PRECISION_BITS));
|
||||
}
|
||||
|
||||
free(prekk);
|
||||
|
||||
imOut = ImagingNew(imIn->mode, xsize, imIn->ysize);
|
||||
if ( ! imOut) {
|
||||
free(kk);
|
||||
free(xbounds);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ImagingSectionEnter(&cookie);
|
||||
if (imIn->image8) {
|
||||
for (yy = 0; yy < imOut->ysize; yy++) {
|
||||
for (xx = 0; xx < xsize; xx++) {
|
||||
xmin = xbounds[xx * 2 + 0];
|
||||
xmax = xbounds[xx * 2 + 1];
|
||||
k = &kk[xx * kmax];
|
||||
ss0 = 1 << (PRECISION_BITS -1);
|
||||
for (x = 0; x < xmax; x++)
|
||||
ss0 += ((UINT8) imIn->image8[yy][x + xmin]) * k[x];
|
||||
imOut->image8[yy][xx] = clip8(ss0);
|
||||
}
|
||||
}
|
||||
} else if (imIn->type == IMAGING_TYPE_UINT8) {
|
||||
if (imIn->bands == 2) {
|
||||
for (yy = 0; yy < imOut->ysize; yy++) {
|
||||
for (xx = 0; xx < xsize; xx++) {
|
||||
xmin = xbounds[xx * 2 + 0];
|
||||
xmax = xbounds[xx * 2 + 1];
|
||||
k = &kk[xx * kmax];
|
||||
ss0 = ss1 = 1 << (PRECISION_BITS -1);
|
||||
for (x = 0; x < xmax; x++) {
|
||||
ss0 += ((UINT8) imIn->image[yy][(x + xmin)*4 + 0]) * k[x];
|
||||
ss1 += ((UINT8) imIn->image[yy][(x + xmin)*4 + 3]) * k[x];
|
||||
}
|
||||
imOut->image[yy][xx*4 + 0] = clip8(ss0);
|
||||
imOut->image[yy][xx*4 + 3] = clip8(ss1);
|
||||
}
|
||||
}
|
||||
} else if (imIn->bands == 3) {
|
||||
for (yy = 0; yy < imOut->ysize; yy++) {
|
||||
for (xx = 0; xx < xsize; xx++) {
|
||||
xmin = xbounds[xx * 2 + 0];
|
||||
xmax = xbounds[xx * 2 + 1];
|
||||
k = &kk[xx * kmax];
|
||||
ss0 = ss1 = ss2 = 1 << (PRECISION_BITS -1);
|
||||
for (x = 0; x < xmax; x++) {
|
||||
ss0 += ((UINT8) imIn->image[yy][(x + xmin)*4 + 0]) * k[x];
|
||||
ss1 += ((UINT8) imIn->image[yy][(x + xmin)*4 + 1]) * k[x];
|
||||
ss2 += ((UINT8) imIn->image[yy][(x + xmin)*4 + 2]) * k[x];
|
||||
}
|
||||
imOut->image[yy][xx*4 + 0] = clip8(ss0);
|
||||
imOut->image[yy][xx*4 + 1] = clip8(ss1);
|
||||
imOut->image[yy][xx*4 + 2] = clip8(ss2);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (yy = 0; yy < imOut->ysize; yy++) {
|
||||
for (xx = 0; xx < xsize; xx++) {
|
||||
xmin = xbounds[xx * 2 + 0];
|
||||
xmax = xbounds[xx * 2 + 1];
|
||||
k = &kk[xx * kmax];
|
||||
ss0 = ss1 = ss2 = ss3 = 1 << (PRECISION_BITS -1);
|
||||
for (x = 0; x < xmax; x++) {
|
||||
ss0 += ((UINT8) imIn->image[yy][(x + xmin)*4 + 0]) * k[x];
|
||||
ss1 += ((UINT8) imIn->image[yy][(x + xmin)*4 + 1]) * k[x];
|
||||
ss2 += ((UINT8) imIn->image[yy][(x + xmin)*4 + 2]) * k[x];
|
||||
ss3 += ((UINT8) imIn->image[yy][(x + xmin)*4 + 3]) * k[x];
|
||||
}
|
||||
imOut->image[yy][xx*4 + 0] = clip8(ss0);
|
||||
imOut->image[yy][xx*4 + 1] = clip8(ss1);
|
||||
imOut->image[yy][xx*4 + 2] = clip8(ss2);
|
||||
imOut->image[yy][xx*4 + 3] = clip8(ss3);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ImagingSectionLeave(&cookie);
|
||||
free(kk);
|
||||
free(xbounds);
|
||||
return imOut;
|
||||
}
|
||||
|
||||
|
||||
Imaging
|
||||
ImagingResampleHorizontal_32bpc(Imaging imIn, int xsize, struct filter *filterp)
|
||||
{
|
||||
ImagingSectionCookie cookie;
|
||||
Imaging imOut;
|
||||
double ss;
|
||||
int xx, yy, x, kmax, xmin, xmax;
|
||||
int *xbounds;
|
||||
double *k, *kk;
|
||||
|
||||
kmax = ImagingPrecompute(imIn->xsize, xsize, filterp, &xbounds, &kk);
|
||||
if ( ! kmax) {
|
||||
return (Imaging) ImagingError_MemoryError();
|
||||
}
|
||||
|
||||
imOut = ImagingNew(imIn->mode, xsize, imIn->ysize);
|
||||
if ( ! imOut) {
|
||||
free(kk);
|
||||
free(xbounds);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ImagingSectionEnter(&cookie);
|
||||
switch(imIn->type) {
|
||||
case IMAGING_TYPE_INT32:
|
||||
for (yy = 0; yy < imOut->ysize; yy++) {
|
||||
for (xx = 0; xx < xsize; xx++) {
|
||||
xmin = xbounds[xx * 2 + 0];
|
||||
xmax = xbounds[xx * 2 + 1];
|
||||
k = &kk[xx * kmax];
|
||||
ss = 0.0;
|
||||
for (x = 0; x < xmax; x++)
|
||||
ss += IMAGING_PIXEL_I(imIn, x + xmin, yy) * k[x];
|
||||
IMAGING_PIXEL_I(imOut, xx, yy) = ROUND_UP(ss);
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case IMAGING_TYPE_FLOAT32:
|
||||
for (yy = 0; yy < imOut->ysize; yy++) {
|
||||
for (xx = 0; xx < xsize; xx++) {
|
||||
xmin = xbounds[xx * 2 + 0];
|
||||
xmax = xbounds[xx * 2 + 1];
|
||||
k = &kk[xx * kmax];
|
||||
ss = 0.0;
|
||||
for (x = 0; x < xmax; x++)
|
||||
ss += IMAGING_PIXEL_F(imIn, x + xmin, yy) * k[x];
|
||||
IMAGING_PIXEL_F(imOut, xx, yy) = ss;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
ImagingSectionLeave(&cookie);
|
||||
free(kk);
|
||||
free(xbounds);
|
||||
return imOut;
|
||||
}
|
||||
|
||||
|
||||
Imaging
|
||||
ImagingResample(Imaging imIn, int xsize, int ysize, int filter)
|
||||
{
|
||||
Imaging imTemp1, imTemp2, imTemp3;
|
||||
Imaging imOut;
|
||||
struct filter *filterp;
|
||||
Imaging (*ResampleHorizontal)(Imaging imIn, int xsize, struct filter *filterp);
|
||||
|
||||
if (strcmp(imIn->mode, "P") == 0 || strcmp(imIn->mode, "1") == 0)
|
||||
return (Imaging) ImagingError_ModeError();
|
||||
|
||||
if (imIn->type == IMAGING_TYPE_SPECIAL) {
|
||||
return (Imaging) ImagingError_ModeError();
|
||||
} else if (imIn->image8) {
|
||||
ResampleHorizontal = ImagingResampleHorizontal_8bpc;
|
||||
} else {
|
||||
switch(imIn->type) {
|
||||
case IMAGING_TYPE_UINT8:
|
||||
ResampleHorizontal = ImagingResampleHorizontal_8bpc;
|
||||
break;
|
||||
case IMAGING_TYPE_INT32:
|
||||
case IMAGING_TYPE_FLOAT32:
|
||||
ResampleHorizontal = ImagingResampleHorizontal_32bpc;
|
||||
break;
|
||||
default:
|
||||
return (Imaging) ImagingError_ModeError();
|
||||
}
|
||||
}
|
||||
|
||||
/* check filter */
|
||||
switch (filter) {
|
||||
|
@ -123,188 +361,8 @@ ImagingResampleHorizontal(Imaging imIn, int xsize, int filter)
|
|||
);
|
||||
}
|
||||
|
||||
/* prepare for horizontal stretch */
|
||||
filterscale = scale = (float) imIn->xsize / xsize;
|
||||
|
||||
/* determine support size (length of resampling filter) */
|
||||
support = filterp->support;
|
||||
|
||||
if (filterscale < 1.0) {
|
||||
filterscale = 1.0;
|
||||
}
|
||||
|
||||
support = support * filterscale;
|
||||
|
||||
/* maximum number of coofs */
|
||||
kmax = (int) ceil(support) * 2 + 1;
|
||||
|
||||
// check for overflow
|
||||
if (kmax > 0 && xsize > SIZE_MAX / kmax)
|
||||
return (Imaging) ImagingError_MemoryError();
|
||||
|
||||
// sizeof(float) should be greater than 0
|
||||
if (xsize * kmax > SIZE_MAX / sizeof(float))
|
||||
return (Imaging) ImagingError_MemoryError();
|
||||
|
||||
/* coefficient buffer */
|
||||
kk = malloc(xsize * kmax * sizeof(float));
|
||||
if ( ! kk)
|
||||
return (Imaging) ImagingError_MemoryError();
|
||||
|
||||
// sizeof(int) should be greater than 0 as well
|
||||
if (xsize > SIZE_MAX / (2 * sizeof(int)))
|
||||
return (Imaging) ImagingError_MemoryError();
|
||||
|
||||
xbounds = malloc(xsize * 2 * sizeof(int));
|
||||
if ( ! xbounds) {
|
||||
free(kk);
|
||||
return (Imaging) ImagingError_MemoryError();
|
||||
}
|
||||
|
||||
for (xx = 0; xx < xsize; xx++) {
|
||||
k = &kk[xx * kmax];
|
||||
center = (xx + 0.5) * scale;
|
||||
ww = 0.0;
|
||||
ss = 1.0 / filterscale;
|
||||
xmin = (int) floor(center - support);
|
||||
if (xmin < 0)
|
||||
xmin = 0;
|
||||
xmax = (int) ceil(center + support);
|
||||
if (xmax > imIn->xsize)
|
||||
xmax = imIn->xsize;
|
||||
for (x = xmin; x < xmax; x++) {
|
||||
float w = filterp->filter((x - center + 0.5) * ss) * ss;
|
||||
k[x - xmin] = w;
|
||||
ww += w;
|
||||
}
|
||||
for (x = 0; x < xmax - xmin; x++) {
|
||||
if (ww != 0.0)
|
||||
k[x] /= ww;
|
||||
}
|
||||
xbounds[xx * 2 + 0] = xmin;
|
||||
xbounds[xx * 2 + 1] = xmax;
|
||||
}
|
||||
|
||||
imOut = ImagingNew(imIn->mode, xsize, imIn->ysize);
|
||||
if ( ! imOut) {
|
||||
free(kk);
|
||||
free(xbounds);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ImagingSectionEnter(&cookie);
|
||||
/* horizontal stretch */
|
||||
for (yy = 0; yy < imOut->ysize; yy++) {
|
||||
if (imIn->image8) {
|
||||
/* 8-bit grayscale */
|
||||
for (xx = 0; xx < xsize; xx++) {
|
||||
xmin = xbounds[xx * 2 + 0];
|
||||
xmax = xbounds[xx * 2 + 1];
|
||||
k = &kk[xx * kmax];
|
||||
ss = 0.5;
|
||||
for (x = xmin; x < xmax; x++)
|
||||
ss += i2f(imIn->image8[yy][x]) * k[x - xmin];
|
||||
imOut->image8[yy][xx] = clip8(ss);
|
||||
}
|
||||
} else {
|
||||
switch(imIn->type) {
|
||||
case IMAGING_TYPE_UINT8:
|
||||
/* n-bit grayscale */
|
||||
if (imIn->bands == 2) {
|
||||
for (xx = 0; xx < xsize; xx++) {
|
||||
xmin = xbounds[xx * 2 + 0];
|
||||
xmax = xbounds[xx * 2 + 1];
|
||||
k = &kk[xx * kmax];
|
||||
ss0 = ss1 = 0.5;
|
||||
for (x = xmin; x < xmax; x++) {
|
||||
ss0 += i2f((UINT8) imIn->image[yy][x*4 + 0]) * k[x - xmin];
|
||||
ss1 += i2f((UINT8) imIn->image[yy][x*4 + 3]) * k[x - xmin];
|
||||
}
|
||||
imOut->image[yy][xx*4 + 0] = clip8(ss0);
|
||||
imOut->image[yy][xx*4 + 3] = clip8(ss1);
|
||||
}
|
||||
} else if (imIn->bands == 3) {
|
||||
for (xx = 0; xx < xsize; xx++) {
|
||||
xmin = xbounds[xx * 2 + 0];
|
||||
xmax = xbounds[xx * 2 + 1];
|
||||
k = &kk[xx * kmax];
|
||||
ss0 = ss1 = ss2 = 0.5;
|
||||
for (x = xmin; x < xmax; x++) {
|
||||
ss0 += i2f((UINT8) imIn->image[yy][x*4 + 0]) * k[x - xmin];
|
||||
ss1 += i2f((UINT8) imIn->image[yy][x*4 + 1]) * k[x - xmin];
|
||||
ss2 += i2f((UINT8) imIn->image[yy][x*4 + 2]) * k[x - xmin];
|
||||
}
|
||||
imOut->image[yy][xx*4 + 0] = clip8(ss0);
|
||||
imOut->image[yy][xx*4 + 1] = clip8(ss1);
|
||||
imOut->image[yy][xx*4 + 2] = clip8(ss2);
|
||||
}
|
||||
} else {
|
||||
for (xx = 0; xx < xsize; xx++) {
|
||||
xmin = xbounds[xx * 2 + 0];
|
||||
xmax = xbounds[xx * 2 + 1];
|
||||
k = &kk[xx * kmax];
|
||||
ss0 = ss1 = ss2 = ss3 = 0.5;
|
||||
for (x = xmin; x < xmax; x++) {
|
||||
ss0 += i2f((UINT8) imIn->image[yy][x*4 + 0]) * k[x - xmin];
|
||||
ss1 += i2f((UINT8) imIn->image[yy][x*4 + 1]) * k[x - xmin];
|
||||
ss2 += i2f((UINT8) imIn->image[yy][x*4 + 2]) * k[x - xmin];
|
||||
ss3 += i2f((UINT8) imIn->image[yy][x*4 + 3]) * k[x - xmin];
|
||||
}
|
||||
imOut->image[yy][xx*4 + 0] = clip8(ss0);
|
||||
imOut->image[yy][xx*4 + 1] = clip8(ss1);
|
||||
imOut->image[yy][xx*4 + 2] = clip8(ss2);
|
||||
imOut->image[yy][xx*4 + 3] = clip8(ss3);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case IMAGING_TYPE_INT32:
|
||||
/* 32-bit integer */
|
||||
for (xx = 0; xx < xsize; xx++) {
|
||||
xmin = xbounds[xx * 2 + 0];
|
||||
xmax = xbounds[xx * 2 + 1];
|
||||
k = &kk[xx * kmax];
|
||||
ss = 0.0;
|
||||
for (x = xmin; x < xmax; x++)
|
||||
ss += i2f(IMAGING_PIXEL_I(imIn, x, yy)) * k[x - xmin];
|
||||
IMAGING_PIXEL_I(imOut, xx, yy) = (int) ss;
|
||||
}
|
||||
break;
|
||||
case IMAGING_TYPE_FLOAT32:
|
||||
/* 32-bit float */
|
||||
for (xx = 0; xx < xsize; xx++) {
|
||||
xmin = xbounds[xx * 2 + 0];
|
||||
xmax = xbounds[xx * 2 + 1];
|
||||
k = &kk[xx * kmax];
|
||||
ss = 0.0;
|
||||
for (x = xmin; x < xmax; x++)
|
||||
ss += IMAGING_PIXEL_F(imIn, x, yy) * k[x - xmin];
|
||||
IMAGING_PIXEL_F(imOut, xx, yy) = ss;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
ImagingSectionLeave(&cookie);
|
||||
free(kk);
|
||||
free(xbounds);
|
||||
return imOut;
|
||||
}
|
||||
|
||||
|
||||
Imaging
|
||||
ImagingResample(Imaging imIn, int xsize, int ysize, int filter)
|
||||
{
|
||||
Imaging imTemp1, imTemp2, imTemp3;
|
||||
Imaging imOut;
|
||||
|
||||
if (strcmp(imIn->mode, "P") == 0 || strcmp(imIn->mode, "1") == 0)
|
||||
return (Imaging) ImagingError_ModeError();
|
||||
|
||||
if (imIn->type == IMAGING_TYPE_SPECIAL)
|
||||
return (Imaging) ImagingError_ModeError();
|
||||
|
||||
/* two-pass resize, first pass */
|
||||
imTemp1 = ImagingResampleHorizontal(imIn, xsize, filter);
|
||||
imTemp1 = ResampleHorizontal(imIn, xsize, filterp);
|
||||
if ( ! imTemp1)
|
||||
return NULL;
|
||||
|
||||
|
@ -315,7 +373,7 @@ ImagingResample(Imaging imIn, int xsize, int ysize, int filter)
|
|||
return NULL;
|
||||
|
||||
/* second pass */
|
||||
imTemp3 = ImagingResampleHorizontal(imTemp2, ysize, filter);
|
||||
imTemp3 = ResampleHorizontal(imTemp2, ysize, filterp);
|
||||
ImagingDelete(imTemp2);
|
||||
if ( ! imTemp3)
|
||||
return NULL;
|
||||
|
|
Loading…
Reference in New Issue
Block a user