Merge pull request #4523 from xtsm/ellipse

Implemented another ellipse drawing algorithm
This commit is contained in:
Hugo van Kemenade 2020-10-11 18:04:34 +03:00 committed by GitHub
commit 15c339470d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
35 changed files with 805 additions and 201 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 284 B

After

Width:  |  Height:  |  Size: 248 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 218 B

After

Width:  |  Height:  |  Size: 199 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 384 B

After

Width:  |  Height:  |  Size: 314 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 439 B

After

Width:  |  Height:  |  Size: 428 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 438 B

After

Width:  |  Height:  |  Size: 426 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 439 B

After

Width:  |  Height:  |  Size: 430 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 402 B

After

Width:  |  Height:  |  Size: 404 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 257 B

After

Width:  |  Height:  |  Size: 237 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 324 B

After

Width:  |  Height:  |  Size: 301 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 519 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 488 B

After

Width:  |  Height:  |  Size: 493 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 507 B

After

Width:  |  Height:  |  Size: 514 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 427 B

After

Width:  |  Height:  |  Size: 429 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 359 B

After

Width:  |  Height:  |  Size: 318 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 466 B

After

Width:  |  Height:  |  Size: 408 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 602 B

After

Width:  |  Height:  |  Size: 622 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 452 B

After

Width:  |  Height:  |  Size: 439 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 477 B

After

Width:  |  Height:  |  Size: 465 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.4 KiB

After

Width:  |  Height:  |  Size: 4.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 339 B

After

Width:  |  Height:  |  Size: 333 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 259 B

After

Width:  |  Height:  |  Size: 267 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 394 B

After

Width:  |  Height:  |  Size: 375 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 496 B

After

Width:  |  Height:  |  Size: 493 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 523 B

After

Width:  |  Height:  |  Size: 519 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 403 B

After

Width:  |  Height:  |  Size: 405 B

View File

@ -311,8 +311,8 @@ def test_subtract():
# Assert
assert new.getbbox() == (25, 50, 76, 76)
assert new.getpixel((50, 50)) == GREEN
assert new.getpixel((50, 51)) == BLACK
assert new.getpixel((50, 51)) == GREEN
assert new.getpixel((50, 52)) == BLACK
def test_subtract_scale_offset():
@ -350,8 +350,8 @@ def test_subtract_modulo():
# Assert
assert new.getbbox() == (25, 50, 76, 76)
assert new.getpixel((50, 50)) == GREEN
assert new.getpixel((50, 51)) == BLACK
assert new.getpixel((50, 51)) == GREEN
assert new.getpixel((50, 52)) == BLACK
def test_subtract_modulo_no_clip():

View File

@ -164,6 +164,19 @@ def test_arc_width_non_whole_angle():
assert_image_similar_tofile(im, expected, 1)
def test_arc_high():
# Arrange
im = Image.new("RGB", (200, 200))
draw = ImageDraw.Draw(im)
# Act
draw.arc([10, 10, 89, 189], 20, 330, width=20, fill="white")
draw.arc([110, 10, 189, 189], 20, 150, width=20, fill="white")
# Assert
assert_image_equal(im, Image.open("Tests/images/imagedraw_arc_high.png"))
def test_bitmap():
# Arrange
im = Image.new("RGB", (W, H))
@ -194,13 +207,11 @@ def helper_chord(mode, bbox, start, end):
def test_chord1():
for mode in ["RGB", "L"]:
helper_chord(mode, BBOX1, 0, 180)
helper_chord(mode, BBOX1, 0.5, 180.4)
def test_chord2():
for mode in ["RGB", "L"]:
helper_chord(mode, BBOX2, 0, 180)
helper_chord(mode, BBOX2, 0.5, 180.4)
def test_chord_width():
@ -240,6 +251,18 @@ def test_chord_zero_width():
assert_image_equal(im, expected)
def test_chord_too_fat():
# Arrange
im = Image.new("RGB", (100, 100))
draw = ImageDraw.Draw(im)
# Act
draw.chord([-150, -150, 99, 99], 15, 60, width=10, fill="white", outline="red")
# Assert
assert_image_equal(im, Image.open("Tests/images/imagedraw_chord_too_fat.png"))
def helper_ellipse(mode, bbox):
# Arrange
im = Image.new(mode, (W, H))
@ -282,15 +305,18 @@ def test_ellipse_edge():
draw = ImageDraw.Draw(im)
# Act
draw.ellipse(((0, 0), (W - 1, H)), fill="white")
draw.ellipse(((0, 0), (W - 1, H - 1)), fill="white")
# Assert
assert_image_similar_tofile(im, "Tests/images/imagedraw_ellipse_edge.png", 1)
def test_ellipse_symmetric():
for bbox in [(25, 25, 76, 76), (25, 25, 75, 75)]:
im = Image.new("RGB", (101, 101))
for width, bbox in (
(100, (24, 24, 75, 75)),
(101, (25, 25, 75, 75)),
):
im = Image.new("RGB", (width, 100))
draw = ImageDraw.Draw(im)
draw.ellipse(bbox, fill="green", outline="blue")
assert_image_equal(im, im.transpose(Image.FLIP_LEFT_RIGHT))
@ -345,6 +371,43 @@ def test_ellipse_zero_width():
assert_image_equal(im, expected)
def ellipse_various_sizes_helper(filled):
ellipse_sizes = range(32)
image_size = sum(ellipse_sizes) + len(ellipse_sizes) + 1
im = Image.new("RGB", (image_size, image_size))
draw = ImageDraw.Draw(im)
x = 1
for w in ellipse_sizes:
y = 1
for h in ellipse_sizes:
border = [x, y, x + w - 1, y + h - 1]
if filled:
draw.ellipse(border, fill="white")
else:
draw.ellipse(border, outline="white")
y += h + 1
x += w + 1
return im
def test_ellipse_various_sizes():
im = ellipse_various_sizes_helper(False)
with Image.open("Tests/images/imagedraw_ellipse_various_sizes.png") as expected:
assert_image_equal(im, expected)
def test_ellipse_various_sizes_filled():
im = ellipse_various_sizes_helper(True)
with Image.open(
"Tests/images/imagedraw_ellipse_various_sizes_filled.png"
) as expected:
assert_image_equal(im, expected)
def helper_line(points):
# Arrange
im = Image.new("RGB", (W, H))
@ -420,13 +483,13 @@ def helper_pieslice(bbox, start, end):
def test_pieslice1():
helper_pieslice(BBOX1, -90, 45)
helper_pieslice(BBOX1, -90.5, 45.4)
helper_pieslice(BBOX1, -92, 46)
helper_pieslice(BBOX1, -92.2, 46.2)
def test_pieslice2():
helper_pieslice(BBOX2, -90, 45)
helper_pieslice(BBOX2, -90.5, 45.4)
helper_pieslice(BBOX2, -92, 46)
helper_pieslice(BBOX2, -92.2, 46.2)
def test_pieslice_width():
@ -467,6 +530,18 @@ def test_pieslice_zero_width():
assert_image_equal(im, expected)
def test_pieslice_wide():
# Arrange
im = Image.new("RGB", (200, 100))
draw = ImageDraw.Draw(im)
# Act
draw.pieslice([0, 0, 199, 99], 190, 170, width=10, fill="white", outline="red")
# Assert
assert_image_equal(im, Image.open("Tests/images/imagedraw_pieslice_wide.png"))
def helper_point(points):
# Arrange
im = Image.new("RGB", (W, H))

View File

@ -79,7 +79,7 @@ def test_ellipse_edge():
brush = ImageDraw2.Brush("white")
# Act
draw.ellipse(((0, 0), (W - 1, H)), brush)
draw.ellipse(((0, 0), (W - 1, H - 1)), brush)
# Assert
assert_image_similar(im, Image.open("Tests/images/imagedraw_ellipse_edge.png"), 1)

View File

@ -118,7 +118,7 @@ class ImageDraw:
fill = self.draw.draw_ink(fill)
return ink, fill
def arc(self, xy, start, end, fill=None, width=0):
def arc(self, xy, start, end, fill=None, width=1):
"""Draw an arc."""
ink, fill = self._getink(fill)
if ink is not None:

View File

@ -2836,8 +2836,7 @@ _draw_arc(ImagingDrawObject* self, PyObject* args)
int ink;
int width = 0;
float start, end;
int op = 0;
if (!PyArg_ParseTuple(args, "Offi|ii", &data, &start, &end, &ink, &width)) {
if (!PyArg_ParseTuple(args, "Offi|i", &data, &start, &end, &ink, &width)) {
return NULL;
}
@ -2854,7 +2853,7 @@ _draw_arc(ImagingDrawObject* self, PyObject* args)
n = ImagingDrawArc(self->image->image,
(int) xy[0], (int) xy[1],
(int) xy[2], (int) xy[3],
start, end, &ink, width, op
start, end, &ink, width, self->blend
);
free(xy);

View File

@ -35,6 +35,7 @@
#include "Imaging.h"
#include <math.h>
#include <stdint.h>
#define CEIL(v) (int) ceil(v)
#define FLOOR(v) ((v) >= 0.0 ? (int) (v) : (int) floor(v))
@ -818,222 +819,751 @@ ImagingDrawBitmap(Imaging im, int x0, int y0, Imaging bitmap, const void* ink,
/* -------------------------------------------------------------------- */
/* standard shapes */
#define ARC 0
#define CHORD 1
#define PIESLICE 2
// Imagine 2D plane and ellipse with center in (0, 0) and semi-major axes a and b.
// Then quarter_* stuff approximates its top right quarter (x, y >= 0) with integer
// points from set {(2x+x0, 2y+y0) | x,y in Z} where x0, y0 are from {0, 1} and
// are such that point (a, b) is in the set.
static void
ellipsePoint(int cx, int cy, int w, int h,
float i, int *x, int *y)
{
float i_cos, i_sin;
float x_f, y_f;
double modf_int;
i_cos = cos(i*M_PI/180);
i_sin = sin(i*M_PI/180);
x_f = (i_cos * w/2) + cx;
y_f = (i_sin * h/2) + cy;
if (modf(x_f, &modf_int) == 0.5) {
*x = i_cos > 0 ? FLOOR(x_f) : CEIL(x_f);
typedef struct {
int32_t a, b, cx, cy, ex, ey;
int64_t a2, b2, a2b2;
int8_t finished;
} quarter_state;
void quarter_init(quarter_state* s, int32_t a, int32_t b) {
if (a < 0 || b < 0) {
s->finished = 1;
} else {
*x = FLOOR(x_f + 0.5);
}
if (modf(y_f, &modf_int) == 0.5) {
*y = i_sin > 0 ? FLOOR(y_f) : CEIL(y_f);
} else {
*y = FLOOR(y_f + 0.5);
s->a = a;
s->b = b;
s->cx = a;
s->cy = b % 2;
s->ex = a % 2;
s->ey = b;
s->a2 = a * a;
s->b2 = b * b;
s->a2b2 = s->a2 * s->b2;
s->finished = 0;
}
}
static int
ellipse(Imaging im, int x0, int y0, int x1, int y1,
float start, float end, const void* ink_, int fill,
int width, int mode, int op)
{
float i;
int inner;
int n;
int maxEdgeCount;
int w, h;
int x, y;
int cx, cy;
int lx = 0, ly = 0;
int sx = 0, sy = 0;
int lx_inner = 0, ly_inner = 0;
int sx_inner = 0, sy_inner = 0;
DRAW* draw;
INT32 ink;
Edge* e;
// deviation of the point from ellipse curve, basically a substitution
// of the point into the ellipse equation
int64_t quarter_delta(quarter_state* s, int64_t x, int64_t y) {
return llabs(s->a2 * y * y + s->b2 * x * x - s->a2b2);
}
DRAWINIT();
while (end < start) {
end += 360;
int8_t quarter_next(quarter_state* s, int32_t* ret_x, int32_t* ret_y) {
if (s->finished) {
return -1;
}
if (end - start > 360) {
// no need to go in loops
end = start + 361;
*ret_x = s->cx;
*ret_y = s->cy;
if (s->cx == s->ex && s->cy == s->ey) {
s->finished = 1;
} else {
// Bresenham's algorithm, possible optimization: only consider 2 of 3
// next points depending on current slope
int32_t nx = s->cx;
int32_t ny = s->cy + 2;
int64_t ndelta = quarter_delta(s, nx, ny);
if (nx > 1) {
int64_t newdelta = quarter_delta(s, s->cx - 2, s->cy + 2);
if (ndelta > newdelta) {
nx = s->cx - 2;
ny = s->cy + 2;
ndelta = newdelta;
}
newdelta = quarter_delta(s, s->cx - 2, s->cy);
if (ndelta > newdelta) {
nx = s->cx - 2;
ny = s->cy;
}
}
s->cx = nx;
s->cy = ny;
}
w = x1 - x0;
h = y1 - y0;
if (w <= 0 || h <= 0) {
return 0;
}
}
cx = (x0 + x1) / 2;
cy = (y0 + y1) / 2;
// quarter_* stuff can "draw" a quarter of an ellipse with thickness 1, great.
// Now we use ellipse_* stuff to join all four quarters of two different sized
// ellipses and receive horizontal segments of a complete ellipse with
// specified thickness.
//
// Still using integer grid with step 2 at this point (like in quarter_*)
// to ease angle clipping in future.
if (!fill && width <= 1) {
for (i = start; i < end+1; i++) {
if (i > end) {
i = end;
}
ellipsePoint(cx, cy, w, h, i, &x, &y);
if (i != start) {
draw->line(im, lx, ly, x, y, ink);
typedef struct {
quarter_state st_o, st_i;
int32_t py, pl, pr;
int32_t cy[4], cl[4], cr[4];
int8_t bufcnt;
int8_t finished;
int8_t leftmost;
} ellipse_state;
void ellipse_init(ellipse_state* s, int32_t a, int32_t b, int32_t w) {
s->bufcnt = 0;
s->leftmost = a % 2;
quarter_init(&s->st_o, a, b);
if (w < 1 || quarter_next(&s->st_o, &s->pr, &s->py) == -1) {
s->finished = 1;
} else {
sx = x, sy = y;
}
lx = x, ly = y;
s->finished = 0;
quarter_init(&s->st_i, a - 2 * (w - 1), b - 2 * (w - 1));
s->pl = s->leftmost;
}
}
if (i != start) {
if (mode == PIESLICE) {
if (x != cx || y != cy) {
draw->line(im, x, y, cx, cy, ink);
draw->line(im, cx, cy, sx, sy, ink);
}
} else if (mode == CHORD) {
if (x != sx || y != sy) {
draw->line(im, x, y, sx, sy, ink);
}
int8_t ellipse_next(ellipse_state* s, int32_t* ret_x0, int32_t* ret_y, int32_t* ret_x1) {
if (s->bufcnt == 0) {
if (s->finished) {
return -1;
}
int32_t y = s->py;
int32_t l = s->pl;
int32_t r = s->pr;
int32_t cx = 0, cy = 0;
int8_t next_ret;
while ((next_ret = quarter_next(&s->st_o, &cx, &cy)) != -1 && cy <= y) {
}
if (next_ret == -1) {
s->finished = 1;
} else {
inner = (mode == ARC || !fill) ? 1 : 0;
// Build edge list
// malloc check UNDONE, FLOAT?
maxEdgeCount = ceil(end - start);
if (inner) {
maxEdgeCount *= 2;
s->pr = cx;
s->py = cy;
}
maxEdgeCount += 3;
e = calloc(maxEdgeCount, sizeof(Edge));
if (!e) {
while ((next_ret = quarter_next(&s->st_i, &cx, &cy)) != -1 && cy <= y) {
l = cx;
}
s->pl = next_ret == -1 ? s->leftmost : cx;
if ((l > 0 || l < r) && y > 0) {
s->cl[s->bufcnt] = l == 0 ? 2 : l;
s->cy[s->bufcnt] = y;
s->cr[s->bufcnt] = r;
++s->bufcnt;
}
if (y > 0) {
s->cl[s->bufcnt] = -r;
s->cy[s->bufcnt] = y;
s->cr[s->bufcnt] = -l;
++s->bufcnt;
}
if (l > 0 || l < r) {
s->cl[s->bufcnt] = l == 0 ? 2 : l;
s->cy[s->bufcnt] = -y;
s->cr[s->bufcnt] = r;
++s->bufcnt;
}
s->cl[s->bufcnt] = -r;
s->cy[s->bufcnt] = -y;
s->cr[s->bufcnt] = -l;
++s->bufcnt;
}
--s->bufcnt;
*ret_x0 = s->cl[s->bufcnt];
*ret_y = s->cy[s->bufcnt];
*ret_x1 = s->cr[s->bufcnt];
return 0;
}
// Clipping tree consists of half-plane clipping nodes and combining nodes.
// We can throw a horizontal segment in such a tree and collect an ordered set
// of resulting disjoint clipped segments organized into a sorted linked list
// of their end points.
typedef enum {
CT_AND, // intersection
CT_OR, // union
CT_CLIP // half-plane clipping
} clip_type;
typedef struct clip_node {
clip_type type;
double a, b, c; // half-plane coeffs, only used in clipping nodes
struct clip_node* l; // child pointers, are only non-NULL in combining nodes
struct clip_node* r;
} clip_node;
// Linked list for the ends of the clipped horizontal segments.
// Since the segment is always horizontal, we don't need to store Y coordinate.
typedef struct event_list {
int32_t x;
int8_t type; // used internally, 1 for the left end (smaller X), -1 for the
// right end; pointless in output since the output segments
// are disjoint, therefore the types would always come in pairs
// and interchange (1 -1 1 -1 ...)
struct event_list* next;
} event_list;
// Mirrors all the clipping nodes of the tree relative to the y = x line.
void clip_tree_transpose(clip_node* root) {
if (root != NULL) {
if (root->type == CT_CLIP) {
double t = root->a;
root->a = root->b;
root->b = t;
}
clip_tree_transpose(root->l);
clip_tree_transpose(root->r);
}
}
// Outputs a sequence of open-close events (types -1 and 1) for
// non-intersecting segments sorted by X coordinate.
// Combining nodes (AND, OR) may also accept sequences for intersecting
// segments, i.e. something like correct bracket sequences.
int clip_tree_do_clip(clip_node* root, int32_t x0, int32_t y, int32_t x1, event_list** ret) {
if (root == NULL) {
event_list* start = malloc(sizeof(event_list));
if (!start) {
ImagingError_MemoryError();
return -1;
}
// Outer circle
n = 0;
for (i = start; i < end+1; i++) {
if (i > end) {
i = end;
event_list* end = malloc(sizeof(event_list));
if (!end) {
free(start);
ImagingError_MemoryError();
return -1;
}
ellipsePoint(cx, cy, w, h, i, &x, &y);
if (i == start) {
sx = x, sy = y;
} else {
add_edge(&e[n++], lx, ly, x, y);
}
lx = x, ly = y;
}
if (n == 0) {
start->x = x0;
start->type = 1;
start->next = end;
end->x = x1;
end->type = -1;
end->next = NULL;
*ret = start;
return 0;
}
if (inner) {
// Inner circle
x0 += width - 1;
y0 += width - 1;
x1 -= width - 1;
y1 -= width - 1;
w = x1 - x0;
h = y1 - y0;
if (w <= 0 || h <= 0) {
// ARC with no gap in the middle is a PIESLICE
mode = PIESLICE;
inner = 0;
if (root->type == CT_CLIP) {
double eps = 1e-9;
double A = root->a;
double B = root->b;
double C = root->c;
if (fabs(A) < eps) {
if (B * y + C < -eps) {
x0 = 1;
x1 = 0;
}
} else {
for (i = start; i < end+1; i++) {
if (i > end) {
i = end;
// X of intersection
double ix = - (B * y + C) / A;
if (A * x0 + B * y + C < eps) {
x0 = lround(fmax(x0, ix));
}
ellipsePoint(cx, cy, w, h, i, &x, &y);
if (i == start) {
sx_inner = x, sy_inner = y;
if (A * x1 + B * y + C < eps) {
x1 = lround(fmin(x1, ix));
}
}
if (x0 <= x1) {
event_list* start = malloc(sizeof(event_list));
if (!start) {
ImagingError_MemoryError();
return -1;
}
event_list* end = malloc(sizeof(event_list));
if (!end) {
free(start);
ImagingError_MemoryError();
return -1;
}
start->x = x0;
start->type = 1;
start->next = end;
end->x = x1;
end->type = -1;
end->next = NULL;
*ret = start;
} else {
add_edge(&e[n++], lx_inner, ly_inner, x, y);
*ret = NULL;
}
lx_inner = x, ly_inner = y;
return 0;
}
if (root->type == CT_OR || root->type == CT_AND) {
event_list* l1;
event_list* l2;
if (clip_tree_do_clip(root->l, x0, y, x1, &l1) < 0) {
return -1;
}
if (clip_tree_do_clip(root->r, x0, y, x1, &l2) < 0) {
while (l1) {
l2 = l1->next;
free(l1);
l1 = l2;
}
return -1;
}
*ret = NULL;
event_list* tail = NULL;
int32_t k1 = 0;
int32_t k2 = 0;
while (l1 != NULL || l2 != NULL) {
event_list* t;
if (l2 == NULL || (l1 != NULL && (l1->x < l2->x || (l1->x == l2->x && l1->type > l2->type)))) {
t = l1;
k1 += t->type;
assert(k1 >= 0);
l1 = l1->next;
} else {
t = l2;
k2 += t->type;
assert(k2 >= 0);
l2 = l2->next;
}
t->next = NULL;
if ((root->type == CT_OR && (
(t->type == 1 && (tail == NULL || tail->type == -1)) ||
(t->type == -1 && k1 == 0 && k2 == 0)
)) ||
(root->type == CT_AND && (
(t->type == 1 && (tail == NULL || tail->type == -1) && k1 > 0 && k2 > 0) ||
(t->type == -1 && tail != NULL && tail->type == 1 && (k1 == 0 || k2 == 0))
))) {
if (tail == NULL) {
*ret = t;
} else {
tail->next = t;
}
tail = t;
} else {
free(t);
}
}
return 0;
}
if (end - start < 360) {
// Close polygon
if (mode == PIESLICE) {
if (x != cx || y != cy) {
add_edge(&e[n++], sx, sy, cx, cy);
add_edge(&e[n++], cx, cy, lx, ly);
if (inner) {
ImagingDrawWideLine(im, sx, sy, cx, cy, &ink, width, op);
ImagingDrawWideLine(im, cx, cy, lx, ly, &ink, width, op);
}
}
} else if (mode == CHORD) {
add_edge(&e[n++], sx, sy, lx, ly);
if (inner) {
add_edge(&e[n++], sx_inner, sy_inner, lx_inner, ly_inner);
}
} else if (mode == ARC) {
add_edge(&e[n++], sx, sy, sx_inner, sy_inner);
add_edge(&e[n++], lx, ly, lx_inner, ly_inner);
}
}
draw->polygon(im, n, e, ink, 0);
free(e);
}
*ret = NULL;
return 0;
}
int
ImagingDrawArc(Imaging im, int x0, int y0, int x1, int y1,
float start, float end, const void* ink, int width, int op)
{
return ellipse(im, x0, y0, x1, y1, start, end, ink, 0, width, ARC, op);
// One more layer of processing on top of the regular ellipse.
// Uses the clipping tree.
// Used for producing ellipse derivatives such as arc, chord, pie, etc.
typedef struct {
ellipse_state st;
clip_node* root;
clip_node nodes[7];
int32_t node_count;
event_list* head;
int32_t y;
} clip_ellipse_state;
typedef void (*clip_ellipse_init)(clip_ellipse_state*, int32_t, int32_t, int32_t, float, float);
void debug_clip_tree(clip_node* root, int space) {
if (root == NULL) {
return;
}
if (root->type == CT_CLIP) {
int t = space;
while (t--) {
fputc(' ', stderr);
}
fprintf(stderr, "clip %+fx%+fy%+f > 0\n", root->a, root->b, root->c);
} else {
debug_clip_tree(root->l, space + 2);
int t = space;
while (t--) {
fputc(' ', stderr);
}
fprintf(stderr, "%s\n", root->type == CT_AND ? "and" : "or");
debug_clip_tree(root->r, space + 2);
}
if (space == 0) {
fputc('\n', stderr);
}
}
int
ImagingDrawChord(Imaging im, int x0, int y0, int x1, int y1,
float start, float end, const void* ink, int fill,
// Resulting angles will satisfy 0 <= al < 360, al <= ar <= al + 360
void normalize_angles(float* al, float* ar) {
if (*ar - *al >= 360) {
*al = 0;
*ar = 360;
} else {
*al = fmod(*al < 0 ? 360 - (fmod(-*al, 360)) : *al, 360);
*ar = *al + fmod(*ar < *al ? 360 - fmod(*al - *ar, 360) : *ar - *al, 360);
}
}
// An arc with caps orthogonal to the ellipse curve.
void arc_init(clip_ellipse_state* s, int32_t a, int32_t b, int32_t w, float al, float ar) {
if (a < b) {
// transpose the coordinate system
arc_init(s, b, a, w, 90 - ar, 90 - al);
ellipse_init(&s->st, a, b, w);
clip_tree_transpose(s->root);
} else {
// a >= b, based on "wide" ellipse
ellipse_init(&s->st, a, b, w);
s->head = NULL;
s->node_count = 0;
normalize_angles(&al, &ar);
// building clipping tree, a lot of different cases
if (ar == al + 360) {
s->root = NULL;
} else {
clip_node* lc = s->nodes + s->node_count++;
clip_node* rc = s->nodes + s->node_count++;
lc->l = lc->r = rc->l = rc->r = NULL;
lc->type = rc->type = CT_CLIP;
lc->a = -a * sin(al * M_PI / 180.0);
lc->b = b * cos(al * M_PI / 180.0);
lc->c = (a * a - b * b) * sin(al * M_PI / 90.0) / 2.0;
rc->a = a * sin(ar * M_PI / 180.0);
rc->b = -b * cos(ar * M_PI / 180.0);
rc->c = (b * b - a * a) * sin(ar * M_PI / 90.0) / 2.0;
if (fmod(al, 180) == 0 || fmod(ar, 180) == 0) {
s->root = s->nodes + s->node_count++;
s->root->l = lc;
s->root->r = rc;
s->root->type = ar - al < 180 ? CT_AND : CT_OR;
} else if (((int)(al / 180) + (int)(ar / 180)) % 2 == 1) {
s->root = s->nodes + s->node_count++;
s->root->l = s->nodes + s->node_count++;
s->root->l->l = s->nodes + s->node_count++;
s->root->l->r = lc;
s->root->r = s->nodes + s->node_count++;
s->root->r->l = s->nodes + s->node_count++;
s->root->r->r = rc;
s->root->type = CT_OR;
s->root->l->type = CT_AND;
s->root->r->type = CT_AND;
s->root->l->l->type = CT_CLIP;
s->root->r->l->type = CT_CLIP;
s->root->l->l->l = s->root->l->l->r = NULL;
s->root->r->l->l = s->root->r->l->r = NULL;
s->root->l->l->a = s->root->l->l->c = 0;
s->root->r->l->a = s->root->r->l->c = 0;
s->root->l->l->b = (int)(al / 180) % 2 == 0 ? 1 : -1;
s->root->r->l->b = (int)(ar / 180) % 2 == 0 ? 1 : -1;
} else {
s->root = s->nodes + s->node_count++;
s->root->l = s->nodes + s->node_count++;
s->root->r = s->nodes + s->node_count++;
s->root->type = s->root->l->type = ar - al < 180 ? CT_AND : CT_OR;
s->root->l->l = lc;
s->root->l->r = rc;
s->root->r->type = CT_CLIP;
s->root->r->l = s->root->r->r = NULL;
s->root->r->a = s->root->r->c = 0;
s->root->r->b = ar < 180 || ar > 540 ? 1 : -1;
}
}
}
}
// A chord line.
void chord_line_init(clip_ellipse_state* s, int32_t a, int32_t b, int32_t w, float al, float ar) {
ellipse_init(&s->st, a, b, a + b + 1);
s->head = NULL;
s->node_count = 0;
// line equation for chord
double xl = a * cos(al * M_PI / 180.0), xr = a * cos(ar * M_PI / 180.0);
double yl = b * sin(al * M_PI / 180.0), yr = b * sin(ar * M_PI / 180.0);
s->root = s->nodes + s->node_count++;
s->root->l = s->nodes + s->node_count++;
s->root->r = s->nodes + s->node_count++;
s->root->type = CT_AND;
s->root->l->type = s->root->r->type = CT_CLIP;
s->root->l->l = s->root->l->r = s->root->r->l = s->root->r->r = NULL;
s->root->l->a = yr - yl;
s->root->l->b = xl - xr;
s->root->l->c = -(s->root->l->a * xl + s->root->l->b * yl);
s->root->r->a = -s->root->l->a;
s->root->r->b = -s->root->l->b;
s->root->r->c = 2 * w * sqrt(pow(s->root->l->a, 2.0) + pow(s->root->l->b, 2.0)) - s->root->l->c;
}
// Pie side.
void pie_side_init(clip_ellipse_state* s, int32_t a, int32_t b, int32_t w, float al, float _) {
ellipse_init(&s->st, a, b, a + b + 1);
s->head = NULL;
s->node_count = 0;
double xl = a * cos(al * M_PI / 180.0);
double yl = b * sin(al * M_PI / 180.0);
double a1 = -yl;
double b1 = xl;
double c1 = w * sqrt(a1 * a1 + b1 * b1);
s->root = s->nodes + s->node_count++;
s->root->type = CT_AND;
s->root->l = s->nodes + s->node_count++;
s->root->l->type = CT_AND;
clip_node* cnode;
cnode = s->nodes + s->node_count++;
cnode->l = cnode->r = NULL;
cnode->type = CT_CLIP;
cnode->a = a1;
cnode->b = b1;
cnode->c = c1;
s->root->l->l = cnode;
cnode = s->nodes + s->node_count++;
cnode->l = cnode->r = NULL;
cnode->type = CT_CLIP;
cnode->a = -a1;
cnode->b = -b1;
cnode->c = c1;
s->root->l->r = cnode;
cnode = s->nodes + s->node_count++;
cnode->l = cnode->r = NULL;
cnode->type = CT_CLIP;
cnode->a = b1;
cnode->b = -a1;
cnode->c = 0;
s->root->r = cnode;
}
// A chord.
void chord_init(clip_ellipse_state* s, int32_t a, int32_t b, int32_t w, float al, float ar) {
ellipse_init(&s->st, a, b, w);
s->head = NULL;
s->node_count = 0;
// line equation for chord
double xl = a * cos(al * M_PI / 180.0), xr = a * cos(ar * M_PI / 180.0);
double yl = b * sin(al * M_PI / 180.0), yr = b * sin(ar * M_PI / 180.0);
s->root = s->nodes + s->node_count++;
s->root->l = s->root->r = NULL;
s->root->type = CT_CLIP;
s->root->a = yr - yl;
s->root->b = xl - xr;
s->root->c = -(s->root->a * xl + s->root->b * yl);
}
// A pie. Can also be used to draw an arc with ugly sharp caps.
void pie_init(clip_ellipse_state* s, int32_t a, int32_t b, int32_t w, float al, float ar) {
ellipse_init(&s->st, a, b, w);
s->head = NULL;
s->node_count = 0;
// line equations for pie sides
double xl = a * cos(al * M_PI / 180.0), xr = a * cos(ar * M_PI / 180.0);
double yl = b * sin(al * M_PI / 180.0), yr = b * sin(ar * M_PI / 180.0);
clip_node* lc = s->nodes + s->node_count++;
clip_node* rc = s->nodes + s->node_count++;
lc->l = lc->r = rc->l = rc->r = NULL;
lc->type = rc->type = CT_CLIP;
lc->a = -yl;
lc->b = xl;
lc->c = 0;
rc->a = yr;
rc->b = -xr;
rc->c = 0;
s->root = s->nodes + s->node_count++;
s->root->l = lc;
s->root->r = rc;
s->root->type = ar - al < 180 ? CT_AND : CT_OR;
}
void clip_ellipse_free(clip_ellipse_state* s) {
while (s->head != NULL) {
event_list* t = s->head;
s->head = s->head->next;
free(t);
}
}
int8_t clip_ellipse_next(clip_ellipse_state* s, int32_t* ret_x0, int32_t* ret_y, int32_t* ret_x1) {
int32_t x0, y, x1;
while (s->head == NULL && ellipse_next(&s->st, &x0, &y, &x1) >= 0) {
if (clip_tree_do_clip(s->root, x0, y, x1, &s->head) < 0) {
return -2;
}
s->y = y;
}
if (s->head != NULL) {
*ret_y = s->y;
event_list* t = s->head;
s->head = s->head->next;
*ret_x0 = t->x;
free(t);
t = s->head;
assert(t != NULL);
s->head = s->head->next;
*ret_x1 = t->x;
free(t);
return 0;
}
return -1;
}
static int
ellipseNew(Imaging im, int x0, int y0, int x1, int y1,
const void* ink_, int fill,
int width, int op)
{
return ellipse(im, x0, y0, x1, y1, start, end, ink, fill, width, CHORD, op);
DRAW* draw;
INT32 ink;
DRAWINIT();
int a = x1 - x0;
int b = y1 - y0;
if (a < 0 || b < 0) {
return 0;
}
if (fill) {
width = a + b;
}
ellipse_state st;
ellipse_init(&st, a, b, width);
int32_t X0, Y, X1;
while (ellipse_next(&st, &X0, &Y, &X1) != -1) {
draw->hline(im, x0 + (X0 + a) / 2, y0 + (Y + b) / 2, x0 + (X1 + a) / 2, ink);
}
return 0;
}
static int
clipEllipseNew(Imaging im, int x0, int y0, int x1, int y1,
float start, float end,
const void* ink_, int width, int op, clip_ellipse_init init)
{
DRAW* draw;
INT32 ink;
DRAWINIT();
int a = x1 - x0;
int b = y1 - y0;
if (a < 0 || b < 0) {
return 0;
}
clip_ellipse_state st;
init(&st, a, b, width, start, end);
// debug_clip_tree(st.root, 0);
int32_t X0, Y, X1;
int next_code;
while ((next_code = clip_ellipse_next(&st, &X0, &Y, &X1)) >= 0) {
draw->hline(im, x0 + (X0 + a) / 2, y0 + (Y + b) / 2, x0 + (X1 + a) / 2, ink);
}
clip_ellipse_free(&st);
return next_code == -1 ? 0 : -1;
}
static int
arcNew(Imaging im, int x0, int y0, int x1, int y1,
float start, float end,
const void* ink_, int width, int op)
{
return clipEllipseNew(im, x0, y0, x1, y1, start, end, ink_, width, op, arc_init);
}
static int
chordNew(Imaging im, int x0, int y0, int x1, int y1,
float start, float end,
const void* ink_, int width, int op)
{
return clipEllipseNew(im, x0, y0, x1, y1, start, end, ink_, width, op, chord_init);
}
static int
chordLineNew(Imaging im, int x0, int y0, int x1, int y1,
float start, float end,
const void* ink_, int width, int op)
{
return clipEllipseNew(im, x0, y0, x1, y1, start, end, ink_, width, op, chord_line_init);
}
static int
pieNew(Imaging im, int x0, int y0, int x1, int y1,
float start, float end,
const void* ink_, int width, int op)
{
return clipEllipseNew(im, x0, y0, x1, y1, start, end, ink_, width, op, pie_init);
}
static int
pieSideNew(Imaging im, int x0, int y0, int x1, int y1,
float start,
const void* ink_, int width, int op)
{
return clipEllipseNew(im, x0, y0, x1, y1, start, 0, ink_, width, op, pie_side_init);
}
int
ImagingDrawEllipse(Imaging im, int x0, int y0, int x1, int y1,
const void* ink, int fill, int width, int op)
{
return ellipse(im, x0, y0, x1, y1, 0, 360, ink, fill, width, CHORD, op);
return ellipseNew(im, x0, y0, x1, y1, ink, fill, width, op);
}
int
ImagingDrawArc(Imaging im, int x0, int y0, int x1, int y1,
float start, float end, const void* ink, int width, int op)
{
normalize_angles(&start, &end);
if (start + 360 == end) {
return ImagingDrawEllipse(im, x0, y0, x1, y1, ink, 0, width, op);
}
if (start == end) {
return 0;
}
return arcNew(im, x0, y0, x1, y1, start, end, ink, width, op);
}
int
ImagingDrawChord(Imaging im, int x0, int y0, int x1, int y1,
float start, float end, const void* ink, int fill,
int width, int op)
{
normalize_angles(&start, &end);
if (start + 360 == end) {
return ImagingDrawEllipse(im, x0, y0, x1, y1, ink, fill, width, op);
}
if (start == end) {
return 0;
}
if (fill) {
return chordNew(im, x0, y0, x1, y1, start, end, ink, x1 - x0 + y1 - y0 + 1, op);
} else {
if (chordLineNew(im, x0, y0, x1, y1, start, end, ink, width, op)) {
return -1;
}
return chordNew(im, x0, y0, x1, y1, start, end, ink, width, op);
}
}
int
ImagingDrawPieslice(Imaging im, int x0, int y0, int x1, int y1,
float start, float end, const void* ink, int fill,
int width, int op)
{
return ellipse(im, x0, y0, x1, y1, start, end, ink, fill, width, PIESLICE, op);
normalize_angles(&start, &end);
if (start + 360 == end) {
return ellipseNew(im, x0, y0, x1, y1, ink, fill, width, op);
}
if (start == end) {
return 0;
}
if (fill) {
return pieNew(im, x0, y0, x1, y1, start, end, ink, x1 + y1 - x0 - y0, op);
} else {
if (pieSideNew(im, x0, y0, x1, y1, start, ink, width, op)) {
return -1;
}
if (pieSideNew(im, x0, y0, x1, y1, end, ink, width, op)) {
return -1;
}
int xc = lround((x0 + x1 - width) / 2.0), yc = lround((y0 + y1 - width) / 2.0);
ellipseNew(im, xc, yc, xc + width - 1, yc + width - 1, ink, 1, 0, op);
return pieNew(im, x0, y0, x1, y1, start, end, ink, width, op);
}
}
/* -------------------------------------------------------------------- */
/* experimental level 2 ("arrow") graphics stuff. this implements