This commit is contained in:
Ronald Lencevičius 2023-09-05 01:35:07 -06:00 committed by GitHub
commit 18a78a6dba
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 112 additions and 0 deletions

View File

@ -0,0 +1,18 @@
from .helper import hopper
def test_getdominantcolors():
def getdominantcolors(mode):
im = hopper(mode)
colors = im.getdominantcolors()
return len(colors)
assert getdominantcolors("F") == 3
assert getdominantcolors("I") == 3
assert getdominantcolors("L") == 3
assert getdominantcolors("P") == 3
assert getdominantcolors("RGB") == 3
assert getdominantcolors("YCbCr") == 3
assert getdominantcolors("CMYK") == 3
assert getdominantcolors("RGBA") == 3
assert getdominantcolors("HSV") == 3

View File

@ -1363,6 +1363,100 @@ class Image:
return self.im.getband(band)
return self.im # could be abused
def getdominantcolors(self, numcolors=3, maxiter=50, threshold=1, quality=1.0):
"""
Returns a list of dominant colors in an image using k-means
clustering.
:param numcolors: Number of dominant colors to search for.
The default number is 3.
:param maxiter: Maximum number of iterations to run the
algorithm. The default limit is 50.
:param threshold: Early stopping condition for the algorithm.
Higher values correspond with increased color differences. The
default is set to 1 (corresponding to 1 pixel difference).
:param quality: Used for scaling an image to speed up calculations.
The default value is 1.0.
:returns: An unsorted list of pixel values.
"""
# Checking if # of pixels is greater than a 1080p image.
if quality >= 1.0 and self.width * self.height >= 2073600:
recommended_quality = 300000 / self.width * self.height
message = "Lower quality recommended: {:.4}".format(recommended_quality)
warnings.warn(message)
elif quality != 1.0:
self.thumbnail((quality * self.width, quality * self.height))
channels = self.im.bands
if channels not in (1, 3, 4):
raise ValueError("Unsupported image mode")
def euclidean(p1, p2):
if channels == 1:
return (p1 - p2) ** 2
return sum([(p1[i] - p2[i]) ** 2 for i in range(channels)])
pixels_and_counts = []
for count, color in self.getcolors(self.width * self.height):
pixels_and_counts.append((color, count))
centroids = []
for i in range(numcolors):
# Formatted as (pixel_cluster, center)
centroids.append(([pixels_and_counts[i]], pixels_and_counts[i][0]))
# Begin k-means clustering
for iter in range(maxiter):
cluster = {}
for i in range(numcolors):
cluster[i] = []
# Calculates all pixel distances from each center to add to the cluster
for pixel in pixels_and_counts:
smallest_distance = float("Inf")
for i in range(numcolors):
distance = euclidean(pixel[0], centroids[i][1])
if distance < smallest_distance:
smallest_distance = distance
idx = i
cluster[idx].append(pixel)
# Adjusting the center of each cluster
difference = 0
for i in range(numcolors):
previous = centroids[i][1]
count_sum = 0
if channels == 1:
pixel_sum = 0.0
for pixel in cluster[i]:
count_sum += pixel[1]
pixel_sum += pixel[0] * pixel[1]
current = pixel_sum / count_sum
else:
pixel_sum = [0.0 for i in range(channels)]
for pixel in cluster[i]:
count_sum += pixel[1]
for channel in range(channels):
pixel_sum[channel] += pixel[0][channel] * pixel[1]
current = [(channel_sum / count_sum) for channel_sum in pixel_sum]
centroids[i] = (cluster[i], current)
difference = max(difference, euclidean(previous, current))
if difference < threshold:
break
if self.mode == "F":
return [center[1] for center in centroids]
elif self.mode in ("I", "L", "P"):
return [int(center[1]) for center in centroids]
else:
return [tuple(map(int, center[1])) for center in centroids]
def getextrema(self):
"""
Gets the minimum and maximum pixel values for each band in