mirror of
https://github.com/python-pillow/Pillow.git
synced 2025-08-09 14:54:46 +03:00
Merge 7725aa5f4e
into 52c6d68613
This commit is contained in:
commit
18a78a6dba
18
Tests/test_image_getdominantcolors.py
Normal file
18
Tests/test_image_getdominantcolors.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
from .helper import hopper
|
||||
|
||||
|
||||
def test_getdominantcolors():
|
||||
def getdominantcolors(mode):
|
||||
im = hopper(mode)
|
||||
colors = im.getdominantcolors()
|
||||
return len(colors)
|
||||
|
||||
assert getdominantcolors("F") == 3
|
||||
assert getdominantcolors("I") == 3
|
||||
assert getdominantcolors("L") == 3
|
||||
assert getdominantcolors("P") == 3
|
||||
assert getdominantcolors("RGB") == 3
|
||||
assert getdominantcolors("YCbCr") == 3
|
||||
assert getdominantcolors("CMYK") == 3
|
||||
assert getdominantcolors("RGBA") == 3
|
||||
assert getdominantcolors("HSV") == 3
|
|
@ -1363,6 +1363,100 @@ class Image:
|
|||
return self.im.getband(band)
|
||||
return self.im # could be abused
|
||||
|
||||
def getdominantcolors(self, numcolors=3, maxiter=50, threshold=1, quality=1.0):
|
||||
"""
|
||||
Returns a list of dominant colors in an image using k-means
|
||||
clustering.
|
||||
|
||||
:param numcolors: Number of dominant colors to search for.
|
||||
The default number is 3.
|
||||
:param maxiter: Maximum number of iterations to run the
|
||||
algorithm. The default limit is 50.
|
||||
:param threshold: Early stopping condition for the algorithm.
|
||||
Higher values correspond with increased color differences. The
|
||||
default is set to 1 (corresponding to 1 pixel difference).
|
||||
:param quality: Used for scaling an image to speed up calculations.
|
||||
The default value is 1.0.
|
||||
:returns: An unsorted list of pixel values.
|
||||
"""
|
||||
|
||||
# Checking if # of pixels is greater than a 1080p image.
|
||||
if quality >= 1.0 and self.width * self.height >= 2073600:
|
||||
recommended_quality = 300000 / self.width * self.height
|
||||
message = "Lower quality recommended: {:.4}".format(recommended_quality)
|
||||
warnings.warn(message)
|
||||
elif quality != 1.0:
|
||||
self.thumbnail((quality * self.width, quality * self.height))
|
||||
|
||||
channels = self.im.bands
|
||||
if channels not in (1, 3, 4):
|
||||
raise ValueError("Unsupported image mode")
|
||||
|
||||
def euclidean(p1, p2):
|
||||
if channels == 1:
|
||||
return (p1 - p2) ** 2
|
||||
return sum([(p1[i] - p2[i]) ** 2 for i in range(channels)])
|
||||
|
||||
pixels_and_counts = []
|
||||
for count, color in self.getcolors(self.width * self.height):
|
||||
pixels_and_counts.append((color, count))
|
||||
|
||||
centroids = []
|
||||
for i in range(numcolors):
|
||||
# Formatted as (pixel_cluster, center)
|
||||
centroids.append(([pixels_and_counts[i]], pixels_and_counts[i][0]))
|
||||
|
||||
# Begin k-means clustering
|
||||
for iter in range(maxiter):
|
||||
cluster = {}
|
||||
for i in range(numcolors):
|
||||
cluster[i] = []
|
||||
|
||||
# Calculates all pixel distances from each center to add to the cluster
|
||||
for pixel in pixels_and_counts:
|
||||
smallest_distance = float("Inf")
|
||||
|
||||
for i in range(numcolors):
|
||||
distance = euclidean(pixel[0], centroids[i][1])
|
||||
if distance < smallest_distance:
|
||||
smallest_distance = distance
|
||||
idx = i
|
||||
|
||||
cluster[idx].append(pixel)
|
||||
|
||||
# Adjusting the center of each cluster
|
||||
difference = 0
|
||||
for i in range(numcolors):
|
||||
previous = centroids[i][1]
|
||||
count_sum = 0
|
||||
|
||||
if channels == 1:
|
||||
pixel_sum = 0.0
|
||||
for pixel in cluster[i]:
|
||||
count_sum += pixel[1]
|
||||
pixel_sum += pixel[0] * pixel[1]
|
||||
current = pixel_sum / count_sum
|
||||
else:
|
||||
pixel_sum = [0.0 for i in range(channels)]
|
||||
for pixel in cluster[i]:
|
||||
count_sum += pixel[1]
|
||||
for channel in range(channels):
|
||||
pixel_sum[channel] += pixel[0][channel] * pixel[1]
|
||||
current = [(channel_sum / count_sum) for channel_sum in pixel_sum]
|
||||
|
||||
centroids[i] = (cluster[i], current)
|
||||
difference = max(difference, euclidean(previous, current))
|
||||
|
||||
if difference < threshold:
|
||||
break
|
||||
|
||||
if self.mode == "F":
|
||||
return [center[1] for center in centroids]
|
||||
elif self.mode in ("I", "L", "P"):
|
||||
return [int(center[1]) for center in centroids]
|
||||
else:
|
||||
return [tuple(map(int, center[1])) for center in centroids]
|
||||
|
||||
def getextrema(self):
|
||||
"""
|
||||
Gets the minimum and maximum pixel values for each band in
|
||||
|
|
Loading…
Reference in New Issue
Block a user