Added tests for integration with nanoarrow

This commit is contained in:
wiredfool 2025-07-21 11:19:45 +02:00
parent 1a02d4ed5a
commit 28c7645d8b
2 changed files with 282 additions and 0 deletions

281
Tests/test_nanoarrow.py Normal file
View File

@ -0,0 +1,281 @@
from __future__ import annotations
import json
from typing import Any, NamedTuple
import pytest
from PIL import Image
from .helper import (
assert_deep_equal,
assert_image_equal,
hopper,
is_big_endian,
)
TYPE_CHECKING = False
if TYPE_CHECKING:
import nanoarrow
else:
nanoarrow = pytest.importorskip("nanoarrow", reason="Nanoarrow not installed")
TEST_IMAGE_SIZE = (10, 10)
def _test_img_equals_pyarray(
img: Image.Image, arr: Any, mask: list[int] | None, elts_per_pixel: int = 1
) -> None:
assert img.height * img.width * elts_per_pixel == len(arr)
px = img.load()
assert px is not None
if elts_per_pixel > 1 and mask is None:
# have to do element-wise comparison when we're comparing
# flattened r,g,b,a to a pixel.
mask = list(range(elts_per_pixel))
for x in range(0, img.size[0], int(img.size[0] / 10)):
for y in range(0, img.size[1], int(img.size[1] / 10)):
if mask:
pixel = px[x, y]
assert isinstance(pixel, tuple)
for ix, elt in enumerate(mask):
if elts_per_pixel == 1:
assert pixel[ix] == arr[y * img.width + x].as_py()[elt]
else:
assert (
pixel[ix]
== arr[(y * img.width + x) * elts_per_pixel + elt].as_py()
)
else:
assert_deep_equal(px[x, y], arr[y * img.width + x].as_py())
def _test_img_equals_int32_pyarray(
img: Image.Image, arr: Any, mask: list[int] | None, elts_per_pixel: int = 1
) -> None:
assert img.height * img.width * elts_per_pixel == len(arr)
px = img.load()
assert px is not None
if mask is None:
# have to do element-wise comparison when we're comparing
# flattened rgba in an uint32 to a pixel.
mask = list(range(elts_per_pixel))
for x in range(0, img.size[0], int(img.size[0] / 10)):
for y in range(0, img.size[1], int(img.size[1] / 10)):
pixel = px[x, y]
assert isinstance(pixel, tuple)
arr_pixel_int = arr[y * img.width + x].as_py()
arr_pixel_tuple = (
arr_pixel_int % 256,
(arr_pixel_int // 256) % 256,
(arr_pixel_int // 256**2) % 256,
(arr_pixel_int // 256**3),
)
if is_big_endian():
arr_pixel_tuple = arr_pixel_tuple[::-1]
for ix, elt in enumerate(mask):
assert pixel[ix] == arr_pixel_tuple[elt]
fl_uint8_4_type = nanoarrow.fixed_size_list(value_type=nanoarrow.uint8(nullable=False),
list_size=4,
nullable=False)
@pytest.mark.parametrize(
"mode, dtype, mask",
(
("L", nanoarrow.uint8(nullable=False), None),
("I", nanoarrow.int32(nullable=False), None),
("F", nanoarrow.float32(nullable=False), None),
("LA", fl_uint8_4_type, [0, 3]),
("RGB", fl_uint8_4_type, [0, 1, 2]),
("RGBA", fl_uint8_4_type, None),
("RGBX", fl_uint8_4_type, None),
("CMYK", fl_uint8_4_type, None),
("YCbCr", fl_uint8_4_type, [0, 1, 2]),
("HSV", fl_uint8_4_type, [0, 1, 2]),
),
)
def test_to_array(mode: str, dtype: nanoarrow, mask: list[int] | None) -> None:
img = hopper(mode)
# Resize to non-square
img = img.crop((3, 0, 124, 127))
assert img.size == (121, 127)
arr = nanoarrow.Array(img) # type: ignore[call-overload]
_test_img_equals_pyarray(img, arr, mask)
assert arr.schema.type == dtype.type
assert arr.schema.nullable == dtype.nullable
reloaded = Image.fromarrow(arr, mode, img.size)
assert reloaded
assert_image_equal(img, reloaded)
def test_lifetime() -> None:
# valgrind shouldn't error out here.
# arrays should be accessible after the image is deleted.
img = hopper("L")
arr_1 = nanoarrow.Array(img) # type: ignore[call-overload]
arr_2 = nanoarrow.Array(img) # type: ignore[call-overload]
del img
assert sum(arr_1.iter_py()) > 0
del arr_1
assert sum(arr_2.iter_py()) > 0
del arr_2
def test_lifetime2() -> None:
# valgrind shouldn't error out here.
# img should remain after the arrays are collected.
img = hopper("L")
arr_1 = nanoarrow.Array(img) # type: ignore[call-overload]
arr_2 = nanoarrow.Array(img) # type: ignore[call-overload]
assert sum(arr_1.iter_py()) > 0
del arr_1
assert sum(arr_2.iter_py()) > 0
del arr_2
img2 = img.copy()
px = img2.load()
assert px # make mypy happy
assert isinstance(px[0, 0], int)
class DataShape(NamedTuple):
dtype: nanoarrow
# Strictly speaking, elt should be a pixel or pixel component, so
# list[uint8][4], float, int, uint32, uint8, etc. But more
# correctly, it should be exactly the dtype from the line above.
elt: Any
elts_per_pixel: int
UINT_ARR = DataShape(
dtype=fl_uint8_4_type,
elt=[1, 2, 3, 4], # array of 4 uint8 per pixel
elts_per_pixel=1, # only one array per pixel
)
UINT = DataShape(
dtype=nanoarrow.uint8(),
elt=3, # one uint8,
elts_per_pixel=4, # but repeated 4x per pixel
)
UINT32 = DataShape(
dtype=nanoarrow.uint32(),
elt=0xABCDEF45, # one packed int, doesn't fit in a int32 > 0x80000000
elts_per_pixel=1, # one per pixel
)
INT32 = DataShape(
dtype=nanoarrow.uint32(),
elt=0x12CDEF45, # one packed int
elts_per_pixel=1, # one per pixel
)
@pytest.mark.xfail(reason="Support for nested array creation is not available in nanoarrow/python")
@pytest.mark.parametrize(
"mode, data_tp, mask",
(
("L", DataShape(nanoarrow.uint8(), 3, 1), None),
("I", DataShape(nanoarrow.int32(), 1 << 24, 1), None),
("F", DataShape(nanoarrow.float32(), 3.14159, 1), None),
("LA", UINT_ARR, [0, 3]),
("LA", UINT, [0, 3]),
("RGB", UINT_ARR, [0, 1, 2]),
("RGBA", UINT_ARR, None),
("CMYK", UINT_ARR, None),
("YCbCr", UINT_ARR, [0, 1, 2]),
("HSV", UINT_ARR, [0, 1, 2]),
("RGB", UINT, [0, 1, 2]),
("RGBA", UINT, None),
("CMYK", UINT, None),
("YCbCr", UINT, [0, 1, 2]),
("HSV", UINT, [0, 1, 2]),
),
)
def test_fromarray(mode: str, data_tp: DataShape, mask: list[int] | None) -> None:
(dtype, elt, elts_per_pixel) = data_tp
ct_pixels = TEST_IMAGE_SIZE[0] * TEST_IMAGE_SIZE[1]
if dtype == fl_uint8_4_type:
# Apparently there's no good way to create this array from python using nanoarrow
# https://github.com/apache/arrow-nanoarrow/issues/620
# the following lines will fail.
tmp_arr = nanoarrow.c_array(elt * (ct_pixels * elts_per_pixel), schema=nanoarrow.uint8())
arr = nanoarrow.Array(tmp_arr, schema=dtype)
else:
arr = nanoarrow.Array(nanoarrow.c_array([elt] * (ct_pixels * elts_per_pixel), schema=dtype))
img = Image.fromarrow(arr, mode, TEST_IMAGE_SIZE)
_test_img_equals_pyarray(img, arr, mask, elts_per_pixel)
@pytest.mark.parametrize(
"mode, data_tp, mask",
(
("LA", UINT32, [0, 3]),
("RGB", UINT32, [0, 1, 2]),
("RGBA", UINT32, None),
("CMYK", UINT32, None),
("YCbCr", UINT32, [0, 1, 2]),
("HSV", UINT32, [0, 1, 2]),
("LA", INT32, [0, 3]),
("RGB", INT32, [0, 1, 2]),
("RGBA", INT32, None),
("CMYK", INT32, None),
("YCbCr", INT32, [0, 1, 2]),
("HSV", INT32, [0, 1, 2]),
),
)
def test_from_int32array(mode: str, data_tp: DataShape, mask: list[int] | None) -> None:
(dtype, elt, elts_per_pixel) = data_tp
ct_pixels = TEST_IMAGE_SIZE[0] * TEST_IMAGE_SIZE[1]
arr = nanoarrow.Array(nanoarrow.c_array([elt] * (ct_pixels * elts_per_pixel), schema=dtype))
img = Image.fromarrow(arr, mode, TEST_IMAGE_SIZE)
_test_img_equals_int32_pyarray(img, arr, mask, elts_per_pixel)
@pytest.mark.parametrize(
"mode, metadata",
(
("LA", ["L", "X", "X", "A"]),
("RGB", ["R", "G", "B", "X"]),
("RGBX", ["R", "G", "B", "X"]),
("RGBA", ["R", "G", "B", "A"]),
("CMYK", ["C", "M", "Y", "K"]),
("YCbCr", ["Y", "Cb", "Cr", "X"]),
("HSV", ["H", "S", "V", "X"]),
),
)
def test_image_nested_metadata(mode: str, metadata: list[str]) -> None:
img = hopper(mode)
arr = nanoarrow.Array(img) # type: ignore[call-overload]
assert arr.schema.value_type.metadata
assert arr.schema.value_type.metadata[b"image"]
parsed_metadata = json.loads(arr.schema.value_type.metadata[b"image"].decode("utf8"))
assert "bands" in parsed_metadata
assert parsed_metadata["bands"] == metadata

View File

@ -60,6 +60,7 @@ optional-dependencies.test-arrow = [
"arro3-compute",
"arro3-core",
"pyarrow",
"nanoarrow",
]
optional-dependencies.tests = [